gather_op.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
Z
zchen0211 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

Z
zchen0211 已提交
27
template <typename T>
Y
Yu Yang 已提交
28
class GatherOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
29
 public:
Z
zchen0211 已提交
30
  void Compute(const framework::ExecutionContext &ctx) const override {
31 32 33
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
34 35 36 37 38

    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

39 40
    int axis = ctx.Attr<int>("axis");
    // get axis from tensor
41
    if (ctx.HasInput("Axis")) {
42
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
43 44
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
45 46 47 48
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(axis_tensor->data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(axis_tensor->data<int64_t>()[0]);
49
      }
50 51
    }
    const auto &place = ctx.GetPlace();
52
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
53 54 55 56 57
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2Function<T, int32_t>(x, index, axis, output, place);
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2Function<T, int64_t>(x, index, axis, output, place);
58 59 60 61
      }
      return;
    }

Z
zchen0211 已提交
62
    output->mutable_data<T>(ctx.GetPlace());
63
    if (x->numel() == 0) return;
64 65 66 67 68
    if (index_type == framework::proto::VarType::INT32) {
      CPUGather<T, int>(ctx.device_context(), *x, *index, output);
    } else if (index_type == framework::proto::VarType::INT64) {
      CPUGather<T, int64_t>(ctx.device_context(), *x, *index, output);
    }
Z
zchen0211 已提交
69 70 71
  }
};

Z
zchen0211 已提交
72
template <typename T>
Y
Yu Yang 已提交
73
class GatherGradientOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
74
 public:
Z
zchen0211 已提交
75
  void Compute(const framework::ExecutionContext &ctx) const override {
76 77 78
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
79

80
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
81 82
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
Z
zchen0211 已提交
83

84
    int axis = ctx.Attr<int>("axis");
85
    if (ctx.HasInput("Axis")) {
86
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
87 88
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
89 90 91 92
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(axis_tensor->data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(axis_tensor->data<int64_t>()[0]);
93
      }
94
    }
95
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
96 97 98 99 100 101

    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2GradFunction<T, int32_t>(dO, index, axis, dX, ctx.GetPlace());
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2GradFunction<T, int64_t>(dO, index, axis, dX, ctx.GetPlace());
102 103 104 105
      }
      return;
    }

Z
zchen0211 已提交
106
    dX->mutable_data<T>(ctx.GetPlace());
Z
zchen0211 已提交
107
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
108 109
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
110
    dxt.device(place) = dxt.constant(static_cast<T>(0));
111
    if (dO->numel() == 0) return;
112
    bool overwrite = ctx.Attr<bool>("overwrite");
113 114

    if (index_type == framework::proto::VarType::INT32) {
115 116 117 118 119
      if (overwrite) {
        ScatterAssign<T, int32_t>(ctx.device_context(), *dO, *index, dX);
      } else {
        ScatterAssignAdd<T, int32_t>(ctx, *dO, *index, dX);
      }
120
    } else if (index_type == framework::proto::VarType::INT64) {
121 122 123 124 125
      if (overwrite) {
        ScatterAssign<T, int64_t>(ctx.device_context(), *dO, *index, dX);
      } else {
        ScatterAssignAdd<T, int64_t>(ctx, *dO, *index, dX);
      }
126
    }
Z
zchen0211 已提交
127 128 129 130 131
  }
};

}  // namespace operators
}  // namespace paddle