test_pool2d_op.py 42.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15
import unittest
16

C
chengduoZH 已提交
17
import numpy as np
18

19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28 29 30 31
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


32 33 34 35 36 37 38 39 40 41 42
def max_pool2D_forward_naive(
    x,
    ksize,
    strides,
    paddings,
    global_pool=0,
    ceil_mode=False,
    exclusive=True,
    adaptive=False,
    data_type=np.float64,
):
43 44
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
45
    N, C, H, W = x.shape
C
chengduoZH 已提交
46 47
    if global_pool == 1:
        ksize = [H, W]
48 49 50
    if adaptive:
        H_out, W_out = ksize
    else:
51 52 53 54 55 56 57 58 59 60
        H_out = (
            (H - ksize[0] + 2 * paddings[0] + strides[0] - 1) // strides[0] + 1
            if ceil_mode
            else (H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        )
        W_out = (
            (W - ksize[1] + 2 * paddings[1] + strides[1] - 1) // strides[1] + 1
            if ceil_mode
            else (W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
        )
C
chengduoZH 已提交
61
    out = np.zeros((N, C, H_out, W_out))
62 63
    for i in range(H_out):
        for j in range(W_out):
64 65 66 67 68 69 70 71 72 73
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
74 75 76 77 78 79
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


80 81 82 83 84 85 86 87 88 89 90
def avg_pool2D_forward_naive(
    x,
    ksize,
    strides,
    paddings,
    global_pool=0,
    ceil_mode=False,
    exclusive=True,
    adaptive=False,
    data_type=np.float64,
):
91 92
    if data_type == np.float64 and core.is_compiled_with_rocm():
        data_type = np.float32
C
chengduoZH 已提交
93
    N, C, H, W = x.shape
C
chengduoZH 已提交
94 95
    if global_pool == 1:
        ksize = [H, W]
96 97 98
    if adaptive:
        H_out, W_out = ksize
    else:
99 100 101 102 103 104 105 106 107 108
        H_out = (
            (H - ksize[0] + 2 * paddings[0] + strides[0] - 1) // strides[0] + 1
            if ceil_mode
            else (H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        )
        W_out = (
            (W - ksize[1] + 2 * paddings[1] + strides[1] - 1) // strides[1] + 1
            if ceil_mode
            else (W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
        )
C
chengduoZH 已提交
109
    out = np.zeros((N, C, H_out, W_out))
110 111
    for i in range(H_out):
        for j in range(W_out):
112 113 114 115 116 117
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
118 119 120 121 122 123 124 125 126 127
                r_start = i * strides[0] - paddings[0]
                r_end = i * strides[0] + ksize[0] - paddings[0]
                c_start = j * strides[1] - paddings[1]
                c_end = j * strides[1] + ksize[1] - paddings[1]
                field_size = (r_end - r_start) * (c_end - c_start)
                r_start = np.max((r_start, 0))
                r_end = np.min((r_end, H))
                c_start = np.max((c_start, 0))
                c_end = np.min((c_end, W))

C
chengduoZH 已提交
128 129
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

130
            if exclusive or adaptive:
D
Double_V 已提交
131 132
                field_size = (r_end - r_start) * (c_end - c_start)

133
            if data_type == np.int8 or data_type == np.uint8:
134 135 136
                out[:, :, i, j] = (
                    np.rint(np.sum(x_masked, axis=(2, 3)) / field_size)
                ).astype(data_type)
137
            else:
138 139 140
                out[:, :, i, j] = (
                    np.sum(x_masked, axis=(2, 3)) / field_size
                ).astype(data_type)
C
chengduoZH 已提交
141 142 143
    return out


144 145 146 147 148 149 150 151 152 153 154 155 156
def pool2D_forward_naive(
    x,
    ksize,
    strides,
    paddings,
    global_pool=0,
    ceil_mode=False,
    exclusive=True,
    adaptive=False,
    data_format='NCHW',
    pool_type="max",
    padding_algorithm="EXPLICIT",
):
157 158 159 160

    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
161 162 163
        for input_size, filter_size, stride_size in zip(
            input_shape, pool_size, pool_stride
        ):
164
            out_size = int((input_size + stride_size - 1) / stride_size)
165
            pad_sum = np.max(
166 167
                ((out_size - 1) * stride_size + filter_size - input_size, 0)
            )
168 169 170 171 172 173 174 175 176
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
177 178 179 180
            raise ValueError(
                "Unknown Attr(padding_algorithm): '%s'. "
                "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)
            )
181 182 183

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
184
            if ceil_mode is not False:
185 186 187
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
188 189
                    "Received ceil_mode: True."
                )
190 191 192 193 194 195 196 197 198 199 200 201
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    N = x.shape[0]
202 203 204
    C, H, W = (
        [x.shape[1], x.shape[2], x.shape[3]]
        if data_format == 'NCHW'
205
        else [x.shape[3], x.shape[1], x.shape[2]]
206
    )
207 208 209 210 211 212 213 214 215 216 217 218 219

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        H_out = (
            (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1)
            // strides[0]
            + 1
            if ceil_mode
            else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        )
        W_out = (
            (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1)
            // strides[1]
            + 1
            if ceil_mode
            else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1
        )

    out = (
        np.zeros((N, C, H_out, W_out))
        if data_format == 'NCHW'
238
        else np.zeros((N, H_out, W_out, C))
239
    )
240 241 242 243 244 245 246 247 248 249 250 251 252
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
D
Double_V 已提交
253 254 255 256 257 258 259 260 261 262
                in_h_start = i * strides[0] - pad_h_up
                in_w_start = j * strides[1] - pad_w_left
                in_h_end = i * strides[0] + ksize[0] - pad_h_up
                in_w_end = j * strides[1] + ksize[1] - pad_w_left

                field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
                in_h_start = np.max((in_h_start, 0))
                in_w_start = np.max((in_w_start, 0))
                in_h_end = np.min((in_h_end, H))
                in_w_end = np.min((in_w_end, W))
263 264 265 266

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
267 268 269 270
                    if exclusive or adaptive:
                        field_size = (in_h_end - in_h_start) * (
                            in_w_end - in_w_start
                        )
D
Double_V 已提交
271

272
                    #                         if (exclusive or adaptive) else (ksize[0] * ksize[1])
273 274 275 276 277 278
                    out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
279 280 281 282
                    if exclusive or adaptive:
                        field_size = (in_h_end - in_h_start) * (
                            in_w_end - in_w_start
                        )
283 284 285 286 287 288
                    out[:, i, j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out


289
class TestPool2D_Op_Mixin:
C
chengduoZH 已提交
290
    def setUp(self):
K
Kexin Zhao 已提交
291
        self.op_type = "pool2d"
292
        self.use_cudnn = False
293
        self.init_kernel_type()
294
        self.use_mkldnn = False
X
xiaolil1 已提交
295
        self.init_data_type()
C
chengduoZH 已提交
296
        self.init_test_case()
297 298
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
299
        self.init_global_pool()
K
Kexin Zhao 已提交
300
        self.init_kernel_type()
C
chengduoZH 已提交
301
        self.init_pool_type()
302
        self.init_ceil_mode()
303
        self.init_exclusive()
304
        self.init_adaptive()
305 306 307
        self.init_data_format()
        self.init_shape()

K
Kexin Zhao 已提交
308
        input = np.random.random(self.shape).astype(self.dtype)
309 310 311 312 313 314 315 316 317 318 319 320 321
        output = pool2D_forward_naive(
            input,
            self.ksize,
            self.strides,
            self.paddings,
            self.global_pool,
            self.ceil_mode,
            self.exclusive,
            self.adaptive,
            self.data_format,
            self.pool_type,
            self.padding_algorithm,
        ).astype(self.dtype)
K
Kexin Zhao 已提交
322
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
323 324 325 326 327

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
328 329
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
330
            'use_cudnn': self.use_cudnn,
331
            'use_mkldnn': self.use_mkldnn,
332
            'ceil_mode': self.ceil_mode,
333
            'data_format': self.data_format,
334
            'exclusive': self.exclusive,
335 336
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
337 338
        }

K
Kexin Zhao 已提交
339
        self.outputs = {'Out': output}
C
chengduoZH 已提交
340

341
    def has_cudnn(self):
342 343
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
344
    def test_check_output(self):
345
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
346
        if self.has_cudnn():
347
            place = core.CUDAPlace(0)
348
            self.check_output_with_place(
349
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
350
            )
351
        else:
352
            self.check_output(check_dygraph=(not self.use_mkldnn))
C
chengduoZH 已提交
353 354

    def test_check_grad(self):
K
Kexin Zhao 已提交
355 356
        if self.dtype == np.float16:
            return
357
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
358
        if self.has_cudnn() and self.pool_type != "max":
359
            place = core.CUDAPlace(0)
360 361 362 363 364
            self.check_grad_with_place(
                place,
                set(['X']),
                'Out',
                max_relative_error=0.07,
365
                check_dygraph=(not self.use_mkldnn),
366
            )
367
        elif self.pool_type != "max":
368 369 370 371
            self.check_grad(
                set(['X']),
                'Out',
                max_relative_error=0.07,
372
                check_dygraph=(not self.use_mkldnn),
373
            )
C
chengduoZH 已提交
374

375 376 377 378
    def init_data_format(self):
        self.data_format = "NCHW"

    def init_shape(self):
C
chengduoZH 已提交
379
        self.shape = [2, 3, 5, 5]
380 381

    def init_test_case(self):
C
chengduoZH 已提交
382 383
        self.ksize = [3, 3]
        self.strides = [1, 1]
384 385

    def init_paddings(self):
C
chengduoZH 已提交
386
        self.paddings = [0, 0]
387
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
388

K
Kexin Zhao 已提交
389
    def init_kernel_type(self):
390
        self.use_cudnn = False
C
chengduoZH 已提交
391

X
xiaolil1 已提交
392
    def init_data_type(self):
393
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
X
xiaolil1 已提交
394

C
chengduoZH 已提交
395 396
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
397 398 399 400
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
401

402 403 404
    def init_ceil_mode(self):
        self.ceil_mode = False

405 406 407
    def init_exclusive(self):
        self.exclusive = True

408 409 410
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
411

A
arlesniak 已提交
412 413 414 415
class TestPool2D_Op(TestPool2D_Op_Mixin, OpTest):
    pass


C
chengduo 已提交
416
class TestCase1(TestPool2D_Op):
C
chengduoZH 已提交
417
    def init_test_case(self):
C
chengduoZH 已提交
418 419
        self.ksize = [3, 3]
        self.strides = [1, 1]
420 421

    def init_paddings(self):
C
chengduoZH 已提交
422
        self.paddings = [0, 0]
C
chengduoZH 已提交
423

C
chengduoZH 已提交
424 425
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
426 427 428 429
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
430

431 432 433
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
434

C
chengduo 已提交
435
class TestCase2(TestPool2D_Op):
C
chengduoZH 已提交
436
    def init_test_case(self):
C
chengduoZH 已提交
437 438
        self.ksize = [3, 3]
        self.strides = [1, 1]
439 440

    def init_paddings(self):
C
chengduoZH 已提交
441 442
        self.paddings = [1, 1]

C
chengduoZH 已提交
443 444
    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
445
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
446

C
chengduoZH 已提交
447 448
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
449

450 451 452
    def init_shape(self):
        self.shape = [2, 3, 7, 7]

C
chengduoZH 已提交
453

C
chengduo 已提交
454
class TestCase3(TestPool2D_Op):
C
chengduoZH 已提交
455 456
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
457
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
458

C
chengduoZH 已提交
459 460

class TestCase4(TestCase1):
C
chengduoZH 已提交
461 462 463 464
    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
465 466

class TestCase5(TestCase2):
C
chengduoZH 已提交
467 468
    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
469
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
470 471


472
# --------------------test pool2d cudnn--------------------
C
chengduoZH 已提交
473 474


C
chengduo 已提交
475
def create_test_cudnn_class(parent):
476 477 478
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
479 480 481
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
482

C
chengduo 已提交
483 484 485
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
K
Kexin Zhao 已提交
486 487


C
chengduo 已提交
488 489 490 491 492 493
create_test_cudnn_class(TestPool2D_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
C
chengduoZH 已提交
494

495
# --------------------test pool2d cudnn_fp16--------------------
C
chengduoZH 已提交
496

K
Kexin Zhao 已提交
497

C
chengduo 已提交
498
def create_test_cudnn_fp16_class(parent, check_grad=True):
499 500 501
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
502 503 504 505
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
506

C
chengduo 已提交
507
        def test_check_output(self):
508
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
509 510 511
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
512 513 514
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
515
                        check_dygraph=(not self.use_mkldnn),
516
                    )
K
Kexin Zhao 已提交
517

C
chengduo 已提交
518
        def test_check_grad(self):
519
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
520
            place = core.CUDAPlace(0)
521 522 523 524 525
            if (
                core.is_float16_supported(place)
                and self.pool_type != "max"
                and check_grad
            ):
C
chengduo 已提交
526
                self.check_grad_with_place(
527 528 529 530
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
531
                    check_dygraph=(not self.use_mkldnn),
532
                )
K
Kexin Zhao 已提交
533

C
chengduo 已提交
534 535 536
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
K
Kexin Zhao 已提交
537

C
chengduoZH 已提交
538

539
def create_test_fp16_class(parent, check_grad=True):
540 541 542
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
543 544 545 546 547 548 549 550 551 552 553 554 555
    class TestFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(
                        place,
                        atol=1e-3,
556
                        check_dygraph=(not self.use_mkldnn),
557
                    )
558 559 560 561

        def test_check_grad(self):
            # TODO(wangzhongpu): support mkldnn op in dygraph mode
            place = core.CUDAPlace(0)
562 563 564 565 566
            if (
                core.is_float16_supported(place)
                and self.pool_type != "max"
                and check_grad
            ):
567 568 569 570 571
                self.check_grad_with_place(
                    place,
                    set(['X']),
                    'Out',
                    max_relative_error=0.07,
572
                    check_dygraph=(not self.use_mkldnn),
573
                )
574 575 576 577 578 579

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
chengduo 已提交
580 581 582 583 584 585
create_test_cudnn_fp16_class(TestPool2D_Op)
create_test_cudnn_fp16_class(TestCase1, check_grad=False)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
C
chengduoZH 已提交
586

587 588 589 590 591 592 593
create_test_fp16_class(TestPool2D_Op)
create_test_fp16_class(TestCase1, check_grad=False)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)

594
# --------------------test pool2d use ceil mode--------------------
K
Kexin Zhao 已提交
595 596


C
chengduo 已提交
597
def create_test_cudnn_use_ceil_class(parent):
598 599 600
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
601 602 603
    class TestPool2DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
604

C
chengduo 已提交
605 606
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
607

C
chengduo 已提交
608 609 610
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
K
Kexin Zhao 已提交
611 612


C
chengduo 已提交
613 614
create_test_cudnn_use_ceil_class(TestPool2D_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
615

616

C
chengduo 已提交
617 618 619 620
def create_test_use_ceil_class(parent):
    class TestPool2DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
621

C
chengduo 已提交
622 623 624
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool2DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool2DUseCeilCase
625 626


C
chengduo 已提交
627 628
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
629

630

631 632 633 634
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

635

C
chengduo 已提交
636 637 638 639
class TestCUDNNAvgInclude(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

640 641 642
    def init_exclusive(self):
        self.exclusive = False

643

644 645 646 647 648
class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


649 650 651 652 653 654 655 656 657 658 659 660 661
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
        self.shape = [8, 3, 6, 6]

    def init_test_case(self):
        self.ksize = [2, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0, 0, 0]


662
# -------test pool2d with asymmetric padding-----
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787


class TestPool2D_AsyPadding(TestPool2D_Op):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 5, 5]


class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCase5_AsyPadding((TestCase5)):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


create_test_cudnn_class(TestPool2D_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 2, 1, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestCUDNNAvgInclude_AsyPadding(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [2, 1, 1, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1, 0, 2]

    def init_shape(self):
        self.shape = [2, 3, 7, 7]


788
# ----------- test channel_last --------------
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
class TestPool2D_channel_last(TestPool2D_Op):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_fp16_class(TestPool2D_channel_last)
create_test_cudnn_fp16_class(TestCase1_channel_last, check_grad=False)
create_test_cudnn_fp16_class(TestCase2_channel_last)
create_test_cudnn_fp16_class(TestCase3_channel_last)
create_test_cudnn_fp16_class(TestCase4_channel_last)
create_test_cudnn_fp16_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
867 868 869
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00
            )
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
    def init_exclusive(self):
        self.exclusive = False


class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
    def init_adaptive(self):
        self.adaptive = True


class TestPool2D_AsyPadding_channel_last(TestPool2D_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 3]


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


create_test_cudnn_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_fp16_class(TestPool2D_AsyPadding_channel_last)
960 961 962
create_test_cudnn_fp16_class(
    TestCase1_AsyPadding_channel_last, check_grad=False
)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
create_test_cudnn_fp16_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_fp16_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool2D_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


983 984 985
class TestCUDNNAvgInclude_AsyPadding_channel_last(
    TestCUDNNAvgInclude_AsyPadding
):
986 987 988 989 990 991 992
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


993 994 995
class TestAvgPoolAdaptive_AsyPadding_channel_last(
    TestAvgPoolAdaptive_AsyPadding
):
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    def init_data_format(self):
        self.data_format = "NHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 3]


# test paddings: SAME VALID


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.paddings = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool2D_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool2D_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
1033 1034 1035
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool2D_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool2D_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool2D_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool2D_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
1091 1092 1093
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool2D_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool2D_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
class TestCase1_strides(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3]
        self.strides = [1, 2]

    def init_shape(self):
        self.shape = [2, 3, 4, 5]


create_test_cudnn_class(TestCase1_strides)
create_test_padding_SAME_class(TestCase1_strides)
create_test_cudnn_padding_SAME_class(TestCase1_strides)


1136
# ----- test API
C
cnn 已提交
1137
class TestPool2DAPI(unittest.TestCase):
1138 1139 1140 1141
    def test_api(self):
        x_NHWC = np.random.random([2, 5, 5, 3]).astype("float32")
        x_NCHW = np.random.random([2, 3, 5, 5]).astype("float32")

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32",
        )

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )

        input_NHWC_negetive = fluid.layers.data(
            name="input_NHWC_negetive",
            shape=[2, -1, 5, 3],
            append_batch_size=False,
            dtype="float32",
        )

        input_NCHW_negetive = fluid.layers.data(
            name="input_NCHW_negetive",
            shape=[2, 3, -1, -1],
            append_batch_size=False,
            dtype="float32",
        )
1169

1170
        ksize = [3, 3]
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        out_1 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1],
            use_cudnn=False,
            data_format="NHWC",
        )

        out_2 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NHWC",
        )

        out_3 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCHW",
        )

        out_4 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0],
            use_cudnn=False,
            data_format="NCHW",
        )
1206
        # test VALID
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        out_5 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCHW",
        )

        out_6 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NHWC",
        )
1224 1225

        # test SAME
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        out_7 = fluid.layers.pool2d(
            input=input_NCHW,
            pool_size=[4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCHW",
        )

        out_8 = fluid.layers.pool2d(
            input=input_NHWC,
            pool_size=[4, 4],
            pool_type="max",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NHWC",
        )
1243

1244
        # test negetive
1245 1246 1247 1248 1249 1250 1251 1252
        out_9 = fluid.layers.pool2d(
            input=input_NHWC_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NHWC",
        )
1253 1254
        assert out_9.shape == (2, -1, 3, 3)

1255 1256 1257 1258 1259 1260 1261 1262
        out_10 = fluid.layers.pool2d(
            input=input_NCHW_negetive,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[0, 0],
            use_cudnn=False,
            data_format="NCHW",
        )
1263 1264
        assert out_10.shape == (2, 3, -1, -1)

1265 1266 1267
        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
1268 1269 1270 1271
            feed={
                "input_NHWC": x_NHWC,
                "input_NCHW": x_NCHW,
                "input_NHWC_negetive": x_NHWC,
1272
                "input_NCHW_negetive": x_NCHW,
1273
            },
1274 1275
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8],
        )
1276 1277 1278

        assert np.allclose(
            res_1,
1279 1280 1281 1282 1283 1284 1285 1286 1287
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[1, 1],
                data_format="NHWC",
            ),
        )
1288 1289 1290

        assert np.allclose(
            res_2,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NHWC",
            ),
        )
        assert np.allclose(
            res_3,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 1, 1, 1],
                data_format="NCHW",
            ),
            rtol=0.07,
            atol=1e-05,
        )

        assert np.allclose(
            res_4,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[1, 2, 1, 0],
                data_format="NCHW",
            ),
            rtol=0.07,
            atol=1e-05,
        )
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

        # VALID
        assert np.allclose(
            res_5,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],  # any ele is ok
                padding_algorithm="VALID",
1338 1339
                data_format="NCHW",
            ),
1340
            rtol=0.07,
1341 1342
            atol=1e-05,
        )
1343 1344
        assert np.allclose(
            res_6,
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NHWC",
            ),
        )
1355
        # SAME
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        assert np.allclose(
            res_7,
            pool2D_forward_naive(
                x=x_NCHW,
                ksize=[4, 4],
                pool_type="avg",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCHW",
            ),
            rtol=0.07,
            atol=1e-05,
        )
1370 1371 1372

        assert np.allclose(
            res_8,
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
            pool2D_forward_naive(
                x=x_NHWC,
                ksize=[4, 4],
                pool_type="max",
                strides=[1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NHWC",
            ),
        )
1383 1384


C
cnn 已提交
1385
class TestPool2DAPI_Error(unittest.TestCase):
1386
    def test_api(self):
1387 1388 1389 1390 1391 1392
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32",
        )
1393 1394
        ksize = [3, 3]

1395
        # cudnn type error
1396
        def run_1():
1397 1398 1399 1400 1401 1402 1403 1404
            out_1 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=[0],
                data_format="NHWC",
            )
1405

1406
        self.assertRaises(TypeError, run_1)
1407 1408 1409

        # data_format value error
        def run_2():
1410 1411 1412 1413 1414 1415 1416 1417
            out_2 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1],
                use_cudnn=False,
                data_format="NHWCC",
            )
1418 1419 1420 1421 1422

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
1423 1424 1425 1426 1427 1428 1429 1430
            out_3 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NHWC",
            )
1431 1432 1433 1434 1435

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
1436 1437 1438 1439 1440 1441 1442 1443 1444
            out_4 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NHWC",
            )
1445 1446 1447 1448 1449

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
1450 1451 1452 1453 1454 1455 1456 1457
            out_5 = fluid.layers.pool2d(
                input=input_NHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                use_cudnn=False,
                data_format="NHWC",
            )
1458 1459 1460 1461

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1462 1463
if __name__ == '__main__':
    unittest.main()