test_dygraph_mnist_fp16.py 4.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

C
chengduo 已提交
17 18
import numpy as np

19
import paddle
C
chengduo 已提交
20
import paddle.fluid as fluid
21
from paddle.nn import Linear
22
from paddle.fluid.framework import _test_eager_guard
C
chengduo 已提交
23 24 25


class SimpleImgConvPool(fluid.dygraph.Layer):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        dtype='float32',
        param_attr=None,
        bias_attr=None,
    ):
46
        super().__init__()
C
chengduo 已提交
47

48 49 50 51
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
52 53 54 55
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
56
            weight_attr=param_attr,
57 58 59
            bias_attr=bias_attr,
        )

60
        self._pool2d = paddle.fluid.dygraph.nn.Pool2D(
61 62 63 64 65 66 67
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
        )
C
chengduo 已提交
68 69 70 71 72 73 74 75

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
76
    def __init__(self, dtype="float32"):
77
        super().__init__()
C
chengduo 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            num_channels=3,
            num_filters=20,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True,
        )

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            num_channels=20,
            num_filters=50,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True,
        )
C
chengduo 已提交
100

101
        self.pool_2_shape = 50 * 53 * 53
C
chengduo 已提交
102
        SIZE = 10
103
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
104 105 106
        self._linear = Linear(
            self.pool_2_shape,
            10,
107 108
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(mean=0.0, std=scale)
109 110
            ),
        )
C
chengduo 已提交
111 112

    def forward(self, inputs, label):
113 114
        x = paddle.nn.functional.relu(self._simple_img_conv_pool_1(inputs))
        x = paddle.nn.functional.relu(self._simple_img_conv_pool_2(x))
115
        x = paddle.reshape(x, shape=[-1, self.pool_2_shape])
116
        cost = self._linear(x)
117
        cost = paddle.nn.functional.softmax(cost)
C
chengduo 已提交
118
        loss = fluid.layers.cross_entropy(cost, label)
119
        avg_loss = paddle.mean(loss)
C
chengduo 已提交
120 121 122 123
        return avg_loss


class TestMnist(unittest.TestCase):
124
    def func_mnist_fp16(self):
C
chengduo 已提交
125 126
        if not fluid.is_compiled_with_cuda():
            return
127
        x = np.random.randn(1, 3, 224, 224).astype("float32")
128
        y = np.random.randint(10, size=[1, 1], dtype="int64")
C
chengduo 已提交
129
        with fluid.dygraph.guard(fluid.CUDAPlace(0)):
130
            model = MNIST(dtype="float32")
C
chengduo 已提交
131 132
            x = fluid.dygraph.to_variable(x)
            y = fluid.dygraph.to_variable(y)
133 134 135 136

            # using amp.auto_cast because paddle.nn.Conv2D doesn't suppport setting dtype
            with paddle.amp.auto_cast(dtype='float16'):
                loss = model(x, y)
137
            print(loss.numpy())
C
chengduo 已提交
138

139 140 141 142 143
    def test_mnist_fp16(self):
        with _test_eager_guard():
            self.func_mnist_fp16()
        self.func_mnist_fp16()

C
chengduo 已提交
144 145 146

if __name__ == "__main__":
    unittest.main()