ops.py 90.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17

from paddle import _C_ops, _legacy_C_ops
18
from paddle.tensor.math import _add_with_axis
19

20
from ..fluid.data_feeder import check_type, check_variable_and_dtype
姜永久 已提交
21
from ..fluid.framework import Variable, in_dygraph_mode
22 23
from ..fluid.initializer import Normal
from ..fluid.layer_helper import LayerHelper
24
from ..fluid.layers import utils
Y
YuanRisheng 已提交
25
from ..framework import _current_expected_place
26
from ..nn import BatchNorm2D, Conv2D, Layer, ReLU, Sequential
27

28 29 30
__all__ = [  # noqa
    'yolo_loss',
    'yolo_box',
31 32
    'prior_box',
    'box_coder',
33 34 35 36 37 38 39 40 41 42 43 44 45 46
    'deform_conv2d',
    'DeformConv2D',
    'distribute_fpn_proposals',
    'generate_proposals',
    'read_file',
    'decode_jpeg',
    'roi_pool',
    'RoIPool',
    'psroi_pool',
    'PSRoIPool',
    'roi_align',
    'RoIAlign',
    'nms',
    'matrix_nms',
47
]
48 49


50 51 52 53 54 55 56 57 58 59 60 61 62 63
def yolo_loss(
    x,
    gt_box,
    gt_label,
    anchors,
    anchor_mask,
    class_num,
    ignore_thresh,
    downsample_ratio,
    gt_score=None,
    use_label_smooth=True,
    name=None,
    scale_x_y=1.0,
):
64
    r"""
65 66 67

    This operator generates YOLOv3 loss based on given predict result and ground
    truth boxes.
68

69
    The output of previous network is in shape [N, C, H, W], while H and W
70
    should be the same, H and W specify the grid size, each grid point predict
71 72
    given number bounding boxes, this given number, which following will be represented as S,
    is specified by the number of anchor clusters in each scale. In the second dimension(the channel
73 74 75
    dimension), C should be equal to S * (class_num + 5), class_num is the object
    category number of source dataset(such as 80 in coco dataset), so in the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    also includes confidence score of the box and class one-hot key of each anchor box.

    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
    should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    In the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    As for confidence score, it is the logistic regression value of IoU between
98 99
    anchor boxes and ground truth boxes, the score of the anchor box which has
    the max IoU should be 1, and if the anchor box has IoU bigger than ignore
100 101 102
    thresh, the confidence score loss of this anchor box will be ignored.

    Therefore, the YOLOv3 loss consists of three major parts: box location loss,
103 104
    objectness loss and classification loss. The L1 loss is used for
    box coordinates (w, h), sigmoid cross entropy loss is used for box
105 106
    coordinates (x, y), objectness loss and classification loss.

107
    Each groud truth box finds a best matching anchor box in all anchors.
108 109 110 111
    Prediction of this anchor box will incur all three parts of losses, and
    prediction of anchor boxes with no GT box matched will only incur objectness
    loss.

112
    In order to trade off box coordinate losses between big boxes and small
113 114 115 116 117 118 119 120 121 122
    boxes, box coordinate losses will be mutiplied by scale weight, which is
    calculated as follows.

    $$
    weight_{box} = 2.0 - t_w * t_h
    $$

    Final loss will be represented as follows.

    $$
S
sunzhongkai588 已提交
123
    loss = (loss_{xy} + loss_{wh}) * weight_{box} + loss_{conf} + loss_{class}
124 125 126
    $$

    While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
127
    target will be smoothed when calculating classification loss, target of
128 129 130
    positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
    negetive samples will be smoothed to :math:`1.0 / class\_num`.

131 132
    While :attr:`gt_score` is given, which means the mixup score of ground truth
    boxes, all losses incured by a ground truth box will be multiplied by its
133 134 135 136 137 138 139
    mixup score.

    Args:
        x (Tensor): The input tensor of YOLOv3 loss operator, This is a 4-D
                      tensor with shape of [N, C, H, W]. H and W should be same,
                      and the second dimension(C) stores box locations, confidence
                      score and classification one-hot keys of each anchor box.
140
                      The data type is float32 or float64.
141
        gt_box (Tensor): groud truth boxes, should be in shape of [N, B, 4],
142
                          in the third dimension, x, y, w, h should be stored.
143
                          x,y is the center coordinate of boxes, w, h are the
144
                          width and height, x, y, w, h should be divided by
145
                          input image height to scale to [0, 1].
146 147
                          N is the batch number and B is the max box number in
                          an image.The data type is float32 or float64.
148
        gt_label (Tensor): class id of ground truth boxes, should be in shape
149
                            of [N, B].The data type is int32.
150 151 152 153 154 155 156 157
        anchors (list|tuple): The anchor width and height, it will be parsed
                              pair by pair.
        anchor_mask (list|tuple): The mask index of anchors used in current
                                  YOLOv3 loss calculation.
        class_num (int): The number of classes.
        ignore_thresh (float): The ignore threshold to ignore confidence loss.
        downsample_ratio (int): The downsample ratio from network input to YOLOv3
                                loss input, so 32, 16, 8 should be set for the
158
                                first, second, and thrid YOLOv3 loss operators.
159
        gt_score (Tensor, optional): mixup score of ground truth boxes, should be in shape
160
                            of [N, B]. Default None.
161 162 163 164 165 166
        use_label_smooth (bool, optional): Whether to use label smooth. Default True.
        name (str, optional): The default value is None. Normally there is no need
                       for user to set this property. For more information,
                       please refer to :ref:`api_guide_Name`
        scale_x_y (float, optional): Scale the center point of decoded bounding box.
                           Default 1.0.
167 168 169 170 171 172 173 174 175

    Returns:
        Tensor: A 1-D tensor with shape [N], the value of yolov3 loss

    Examples:
      .. code-block:: python

          import paddle

176 177 178
          x = paddle.rand([2, 14, 8, 8]).astype('float32')
          gt_box = paddle.rand([2, 10, 4]).astype('float32')
          gt_label = paddle.rand([2, 10]).astype('int32')
179 180 181 182 183 184 185 186 187 188 189 190 191 192


          loss = paddle.vision.ops.yolo_loss(x,
                                             gt_box=gt_box,
                                             gt_label=gt_label,
                                             anchors=[10, 13, 16, 30],
                                             anchor_mask=[0, 1],
                                             class_num=2,
                                             ignore_thresh=0.7,
                                             downsample_ratio=8,
                                             use_label_smooth=True,
                                             scale_x_y=1.)
    """

193
    if in_dygraph_mode():
194
        loss, _, _ = _C_ops.yolo_loss(
195 196 197 198 199 200 201 202 203 204 205 206
            x,
            gt_box,
            gt_label,
            gt_score,
            anchors,
            anchor_mask,
            class_num,
            ignore_thresh,
            downsample_ratio,
            use_label_smooth,
            scale_x_y,
        )
207 208
        return loss

姜永久 已提交
209 210 211 212 213 214
    else:
        helper = LayerHelper('yolov3_loss', **locals())

        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_loss')
        check_variable_and_dtype(
            gt_box, 'gt_box', ['float32', 'float64'], 'yolo_loss'
215
        )
姜永久 已提交
216 217 218 219 220 221
        check_variable_and_dtype(gt_label, 'gt_label', 'int32', 'yolo_loss')
        check_type(anchors, 'anchors', (list, tuple), 'yolo_loss')
        check_type(anchor_mask, 'anchor_mask', (list, tuple), 'yolo_loss')
        check_type(class_num, 'class_num', int, 'yolo_loss')
        check_type(ignore_thresh, 'ignore_thresh', float, 'yolo_loss')
        check_type(use_label_smooth, 'use_label_smooth', bool, 'yolo_loss')
222

姜永久 已提交
223
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
224

姜永久 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        objectness_mask = helper.create_variable_for_type_inference(
            dtype='int32'
        )
        gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {
            "X": x,
            "GTBox": gt_box,
            "GTLabel": gt_label,
        }
        if gt_score is not None:
            inputs["GTScore"] = gt_score

        attrs = {
            "anchors": anchors,
            "anchor_mask": anchor_mask,
            "class_num": class_num,
            "ignore_thresh": ignore_thresh,
            "downsample_ratio": downsample_ratio,
            "use_label_smooth": use_label_smooth,
            "scale_x_y": scale_x_y,
        }

        helper.append_op(
            type='yolov3_loss',
            inputs=inputs,
            outputs={
                'Loss': loss,
                'ObjectnessMask': objectness_mask,
                'GTMatchMask': gt_match_mask,
            },
            attrs=attrs,
        )
        return loss
259 260


261 262 263 264 265 266 267 268 269 270 271 272 273
def yolo_box(
    x,
    img_size,
    anchors,
    class_num,
    conf_thresh,
    downsample_ratio,
    clip_bbox=True,
    name=None,
    scale_x_y=1.0,
    iou_aware=False,
    iou_aware_factor=0.5,
):
274
    r"""
275 276

    This operator generates YOLO detection boxes from output of YOLOv3 network.
277

278
    The output of previous network is in shape [N, C, H, W], while H and W
279
    should be the same, H and W specify the grid size, each grid point predict
280 281
    given number boxes, this given number, which following will be represented as S,
    is specified by the number of anchors. In the second dimension(the channel
282 283
    dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
    otherwise C should be equal to S * (6 + class_num). class_num is the object
284 285 286
    category number of source dataset(such as 80 in coco dataset), so the
    second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
    also includes confidence score of the box and class one-hot key of each anchor
287 288
    box.

289
    Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    predictions should be as follows:

    $$
    b_x = \\sigma(t_x) + c_x
    $$
    $$
    b_y = \\sigma(t_y) + c_y
    $$
    $$
    b_w = p_w e^{t_w}
    $$
    $$
    b_h = p_h e^{t_h}
    $$

    in the equation above, :math:`c_x, c_y` is the left top corner of current grid
    and :math:`p_w, p_h` is specified by anchors.

    The logistic regression value of the 5th channel of each anchor prediction boxes
    represents the confidence score of each prediction box, and the logistic
310
    regression value of the last :attr:`class_num` channels of each anchor prediction
311
    boxes represents the classifcation scores. Boxes with confidence scores less than
312
    :attr:`conf_thresh` should be ignored, and box final scores is the product of
313 314 315 316 317 318
    confidence scores and classification scores.

    $$
    score_{pred} = score_{conf} * score_{class}
    $$

319

320 321 322 323 324
    Args:
        x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with
                      shape of [N, C, H, W]. The second dimension(C) stores box
                      locations, confidence score and classification one-hot keys
                      of each anchor box. Generally, X should be the output of
325
                      YOLOv3 network. The data type is float32 or float64.
326 327 328
        img_size (Tensor): The image size tensor of YoloBox operator, This is a
                           2-D tensor with shape of [N, 2]. This tensor holds
                           height and width of each input image used for resizing
329
                           output box in input image scale. The data type is int32.
330 331 332 333 334 335 336 337 338 339
        anchors (list|tuple): The anchor width and height, it will be parsed pair
                              by pair.
        class_num (int): The number of classes.
        conf_thresh (float): The confidence scores threshold of detection boxes.
                             Boxes with confidence scores under threshold should
                             be ignored.
        downsample_ratio (int): The downsample ratio from network input to
                                :attr:`yolo_box` operator input, so 32, 16, 8
                                should be set for the first, second, and thrid
                                :attr:`yolo_box` layer.
340
        clip_bbox (bool, optional): Whether clip output bonding box in :attr:`img_size`
341
                          boundary. Default true.
342 343 344 345 346 347
        name (str, optional): The default value is None. Normally there is no need
                       for user to set this property. For more information,
                       please refer to :ref:`api_guide_Name`.
        scale_x_y (float, optional): Scale the center point of decoded bounding box. Default 1.0
        iou_aware (bool, optional): Whether use iou aware. Default false.
        iou_aware_factor (float, optional): iou aware factor. Default 0.5.
348 349 350

    Returns:
        Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
351
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification
352 353 354 355 356 357 358 359
        scores of boxes.

    Examples:

    .. code-block:: python

        import paddle

360 361
        x = paddle.rand([2, 14, 8, 8]).astype('float32')
        img_size = paddle.ones((2, 2)).astype('int32')
362 363 364 365 366 367 368 369 370 371

        boxes, scores = paddle.vision.ops.yolo_box(x,
                                                   img_size=img_size,
                                                   anchors=[10, 13, 16, 30],
                                                   class_num=2,
                                                   conf_thresh=0.01,
                                                   downsample_ratio=8,
                                                   clip_bbox=True,
                                                   scale_x_y=1.)
    """
H
hong 已提交
372
    if in_dygraph_mode():
373 374 375 376 377 378 379 380 381 382 383 384
        boxes, scores = _C_ops.yolo_box(
            x,
            img_size,
            anchors,
            class_num,
            conf_thresh,
            downsample_ratio,
            clip_bbox,
            scale_x_y,
            iou_aware,
            iou_aware_factor,
        )
H
hong 已提交
385 386
        return boxes, scores

姜永久 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    else:
        helper = LayerHelper('yolo_box', **locals())

        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'yolo_box')
        check_variable_and_dtype(img_size, 'img_size', 'int32', 'yolo_box')
        check_type(anchors, 'anchors', (list, tuple), 'yolo_box')
        check_type(conf_thresh, 'conf_thresh', float, 'yolo_box')

        boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
        scores = helper.create_variable_for_type_inference(dtype=x.dtype)

        attrs = {
            "anchors": anchors,
            "class_num": class_num,
            "conf_thresh": conf_thresh,
            "downsample_ratio": downsample_ratio,
            "clip_bbox": clip_bbox,
            "scale_x_y": scale_x_y,
            "iou_aware": iou_aware,
            "iou_aware_factor": iou_aware_factor,
        }

        helper.append_op(
            type='yolo_box',
            inputs={
                "X": x,
                "ImgSize": img_size,
            },
            outputs={
                'Boxes': boxes,
                'Scores': scores,
            },
            attrs=attrs,
420
        )
421 422
        return boxes, scores

423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
def prior_box(
    input,
    image,
    min_sizes,
    max_sizes=None,
    aspect_ratios=[1.0],
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=False,
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    min_max_aspect_ratios_order=False,
    name=None,
):
    r"""

    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.

    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input (Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
       image (Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes (list|tuple|float): the min sizes of generated prior boxes.
       max_sizes (list|tuple|None, optional): the max sizes of generated prior boxes.
            Default: None, means [] and will not be used.
       aspect_ratios (list|tuple|float, optional): the aspect ratios of generated
            prior boxes. Default: [1.0].
       variance (list|tuple, optional): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip (bool): Whether to flip aspect ratios. Default:False.
       clip (bool): Whether to clip out-of-boundary boxes. Default: False.
       steps (list|tuple, optional): Prior boxes steps across width and height, If
            steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across
            height or weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset (float, optional)): Prior boxes center offset. Default: 0.5
       min_max_aspect_ratios_order (bool, optional): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
       name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: the output prior boxes and the expanded variances of PriorBox.
            The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4],
            num_priors is the total box count of each position of input.
            The expanded variances is a 4-D tensor, same shape as the prior boxes.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32)
            image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32)

            box, var = paddle.vision.ops.prior_box(
                input=input,
                image=image,
                min_sizes=[2.0, 4.0],
                clip=True,
                flip=True)

    """

    def _is_list_or_tuple_(data):
        return isinstance(data, list) or isinstance(data, tuple)

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not _is_list_or_tuple_(steps):
        steps = [steps]
    if not len(steps) == 2:
        raise ValueError('steps should be (step_w, step_h)')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

    cur_max_sizes = None
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
        cur_max_sizes = max_sizes

    if in_dygraph_mode():
        step_w, step_h = steps
520
        if max_sizes is None:
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            max_sizes = []
        box, var = _C_ops.prior_box(
            input,
            image,
            min_sizes,
            aspect_ratios,
            variance,
            max_sizes,
            flip,
            clip,
            step_w,
            step_h,
            offset,
            min_max_aspect_ratios_order,
        )
        return box, var

    else:
539 540 541 542 543
        helper = LayerHelper("prior_box", **locals())
        dtype = helper.input_dtype()
        check_variable_and_dtype(
            input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box'
        )
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
        attrs = {
            'min_sizes': min_sizes,
            'aspect_ratios': aspect_ratios,
            'variances': variance,
            'flip': flip,
            'clip': clip,
            'step_w': steps[0],
            'step_h': steps[1],
            'offset': offset,
            'min_max_aspect_ratios_order': min_max_aspect_ratios_order,
        }
        if cur_max_sizes is not None:
            attrs['max_sizes'] = cur_max_sizes

        box = helper.create_variable_for_type_inference(dtype)
        var = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input, "Image": image},
            outputs={"Boxes": box, "Variances": var},
            attrs=attrs,
        )
        box.stop_gradient = True
        var.stop_gradient = True
        return box, var


def box_coder(
    prior_box,
    prior_box_var,
    target_box,
    code_type="encode_center_size",
    box_normalized=True,
    axis=0,
    name=None,
):
    r"""
    Encode/Decode the target bounding box with the priorbox information.

    The Encoding schema described below:

    .. math::

        ox &= (tx - px) / pw / pxv

        oy &= (ty - py) / ph / pyv

        ow &= log(abs(tw / pw)) / pwv

        oh &= log(abs(th / ph)) / phv

    The Decoding schema described below:

    .. math::

        ox &= (pw * pxv * tx * + px) - tw / 2

        oy &= (ph * pyv * ty * + py) - th / 2

        ow &= exp(pwv * tw) * pw + tw / 2

        oh &= exp(phv * th) * ph + th / 2

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
    the priorbox's (anchor) center coordinates, width and height. `pxv`,
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
    `ow`, `oh` denote the encoded/decoded coordinates, width and height.
    During Box Decoding, two modes for broadcast are supported. Say target
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
    [M, 4]. Then prior box will broadcast to target box along the
    assigned axis.

    Args:
        prior_box (Tensor): Box list prior_box is a 2-D Tensor with shape
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system.
            [xmax, ymax] is the right bottom coordinate of the anchor box.
        prior_box_var (List|Tensor|None): prior_box_var supports three types
            of input. One is Tensor with shape [M, 4] which holds M group and
            data type is float32 or float64. The second is list consist of
            4 elements shared by all boxes and data type is float32 or float64.
            Other is None and not involved in calculation.
        target_box (Tensor): This input can be a 2-D LoDTensor with shape
            [N, 4] when code_type is 'encode_center_size'. This input also can
            be a 3-D Tensor with shape [N, M, 4] when code_type is
            'decode_center_size'. Each box is represented as
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
        code_type (str, optional): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size`
            by default.
        box_normalized (bool, optional): Whether treat the priorbox as a normalized box.
            Set true by default.
        axis (int, optional): Which axis in PriorBox to broadcast for box decode,
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is
            `decode_center_size`. Set 0 by default.
        name (str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        Tensor: output boxes, when code_type is 'encode_center_size', the
            output tensor of box_coder_op with shape [N, M, 4] representing the
            result of N target boxes encoded with M Prior boxes and variances.
            When code_type is 'decode_center_size', N represents the batch size
            and M represents the number of decoded boxes.

    Examples:
        .. code-block:: python

            import paddle

            # For encode
            prior_box_encode = paddle.rand((80, 4), dtype=paddle.float32)
            prior_box_var_encode = paddle.rand((80, 4), dtype=paddle.float32)
            target_box_encode = paddle.rand((20, 4), dtype=paddle.float32)
            output_encode = paddle.vision.ops.box_coder(
                prior_box=prior_box_encode,
                prior_box_var=prior_box_var_encode,
                target_box=target_box_encode,
                code_type="encode_center_size")

            # For decode
            prior_box_decode = paddle.rand((80, 4), dtype=paddle.float32)
            prior_box_var_decode = paddle.rand((80, 4), dtype=paddle.float32)
            target_box_decode = paddle.rand((20, 80, 4), dtype=paddle.float32)
            output_decode = paddle.vision.ops.box_coder(
                prior_box=prior_box_decode,
                prior_box_var=prior_box_var_decode,
                target_box=target_box_decode,
                code_type="decode_center_size",
                box_normalized=False)

    """
    if in_dygraph_mode():
        if isinstance(prior_box_var, Variable):
            output_box = _C_ops.box_coder(
                prior_box,
                prior_box_var,
                target_box,
                code_type,
                box_normalized,
                axis,
                [],
            )
        elif isinstance(prior_box_var, list):
            output_box = _C_ops.box_coder(
                prior_box,
                None,
                target_box,
                code_type,
                box_normalized,
                axis,
                prior_box_var,
            )
        else:
            raise TypeError("Input prior_box_var must be Variable or list")
        return output_box

    else:
708 709 710 711 712 713
        check_variable_and_dtype(
            prior_box, 'prior_box', ['float32', 'float64'], 'box_coder'
        )
        check_variable_and_dtype(
            target_box, 'target_box', ['float32', 'float64'], 'box_coder'
        )
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        helper = LayerHelper("box_coder", **locals())

        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype
        )

        inputs = {"PriorBox": prior_box, "TargetBox": target_box}
        attrs = {
            "code_type": code_type,
            "box_normalized": box_normalized,
            "axis": axis,
        }
        if isinstance(prior_box_var, Variable):
            inputs['PriorBoxVar'] = prior_box_var
        elif isinstance(prior_box_var, list):
            attrs['variance'] = prior_box_var
        else:
            raise TypeError("Input prior_box_var must be Variable or list")
        helper.append_op(
            type="box_coder",
            inputs=inputs,
            attrs=attrs,
            outputs={"OutputBox": output_box},
        )
        return output_box


741 742 743 744 745 746 747 748 749 750 751 752 753
def deform_conv2d(
    x,
    offset,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    deformable_groups=1,
    groups=1,
    mask=None,
    name=None,
):
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

794 795
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
796 797 798 799 800 801 802 803 804

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width.
805
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
806
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
807
            contain two integers, (stride_H, stride_W). Otherwise, the
808
            stride_H = stride_W = stride. Default: 1.
809
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
810
            contain two integers, (padding_H, padding_W). Otherwise, the
811
            padding_H = padding_W = padding. Default: 0.
812
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
813
            contain two integers, (dilation_H, dilation_W). Otherwise, the
814
            dilation_H = dilation_W = dilation. Default: 1.
815
        deformable_groups (int): The number of deformable group partitions.
816
            Default: 1.
817 818 819 820
        groups (int, optonal): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
821
            connected to the second half of the input channels. Default: 1.
822 823
        mask (Tensor, optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
824
            deformable convolution v1. Default: None.
825 826 827
        name(str, optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
828 829
        Tensor: 4-D Tensor storing the deformable convolution result.\
            A Tensor with type float32, float64.
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight, mask=mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          weight = paddle.rand((16, 1, kh, kw))
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          out = paddle.vision.ops.deform_conv2d(input, offset, weight)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    use_deform_conv2d_v1 = True if mask is None else False

872
    if in_dygraph_mode():
873 874 875 876 877 878 879 880 881 882 883 884
        pre_bias = _C_ops.deformable_conv(
            x,
            offset,
            weight,
            mask,
            stride,
            padding,
            dilation,
            deformable_groups,
            groups,
            1,
        )
885
        if bias is not None:
886
            out = _add_with_axis(pre_bias, bias, axis=1)
887 888
        else:
            out = pre_bias
889
    else:
890 891 892 893 894 895
        check_variable_and_dtype(
            x, "x", ['float32', 'float64'], 'deform_conv2d'
        )
        check_variable_and_dtype(
            offset, "offset", ['float32', 'float64'], 'deform_conv2d'
        )
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

        num_channels = x.shape[1]

        helper = LayerHelper('deformable_conv', **locals())
        dtype = helper.input_dtype()

        stride = utils.convert_to_list(stride, 2, 'stride')
        padding = utils.convert_to_list(padding, 2, 'padding')
        dilation = utils.convert_to_list(dilation, 2, 'dilation')

        pre_bias = helper.create_variable_for_type_inference(dtype)

        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
            }
        else:
            op_type = 'deformable_conv'
            inputs = {
                'Input': x,
                'Filter': weight,
                'Offset': offset,
                'Mask': mask,
            }

        outputs = {"Output": pre_bias}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
930
            'deformable_groups': deformable_groups,
931 932
            'im2col_step': 1,
        }
933 934 935
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
936 937 938

        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
939 940 941 942 943 944
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': 1},
            )
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
        else:
            out = pre_bias
    return out


class DeformConv2D(Layer):
    r"""
    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          x shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          weight shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          offset shape: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`

          mask shape: :math:`(N, H_f * W_f, H_{out}, W_{out})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

S
sunzhongkai588 已提交
991 992
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
993 994 995 996 997 998


    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple): The size of the convolving kernel.
999
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
1000 1001
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
1002
        padding (int|list|tuple, optional): The padding size. If padding is a list/tuple, it must
1003 1004
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
1005
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1006 1007
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
1008
        deformable_groups (int, optional): The number of deformable group partitions.
1009
            Default: deformable_groups = 1.
1010 1011 1012 1013 1014 1015 1016 1017 1018
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
S
sunzhongkai588 已提交
1019
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - offset: :math:`(N, 2 * H_f * W_f, H_{out}, W_{out})`
        - mask: :math:`(N, H_f * W_f, H_{out}, W_{out})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
1033

1034
        Where
1035

1036
        ..  math::
S
sunzhongkai588 已提交
1037 1038 1039 1040

            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          mask = paddle.rand((8, kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset, mask)
          print(out.shape)
          # returns
          [8, 16, 26, 26]

          #deformable conv v1:

          import paddle
          input = paddle.rand((8, 1, 28, 28))
          kh, kw = 3, 3
          # offset shape should be [bs, 2 * kh * kw, out_h, out_w]
          # mask shape should be [bs, hw * hw, out_h, out_w]
          # In this case, for an input of 28, stride of 1
          # and kernel size of 3, without padding, the output size is 26
          offset = paddle.rand((8, 2 * kh * kw, 26, 26))
          deform_conv = paddle.vision.ops.DeformConv2D(
              in_channels=1,
              out_channels=16,
              kernel_size=[kh, kw])
          out = deform_conv(input, offset)
          print(out.shape)
          # returns
          [8, 16, 26, 26]
    """

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        deformable_groups=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
    ):
1097
        super().__init__()
1098 1099 1100
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
1101 1102
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
1103
        self._deformable_groups = deformable_groups
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._channel_dim = 1

        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size')

        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")

        self._padding = utils.convert_to_list(padding, 2, 'padding')

        filter_shape = [out_channels, in_channels // groups] + self._kernel_size

        def _get_default_param_initializer():
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
1122
            std = (2.0 / filter_elem_num) ** 0.5
1123 1124 1125 1126 1127
            return Normal(0.0, std, 0)

        self.weight = self.create_parameter(
            shape=filter_shape,
            attr=self._weight_attr,
1128 1129 1130 1131 1132
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
1133 1134

    def forward(self, x, offset, mask=None):
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        out = deform_conv2d(
            x=x,
            offset=offset,
            weight=self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._padding,
            dilation=self._dilation,
            deformable_groups=self._deformable_groups,
            groups=self._groups,
            mask=mask,
        )
1147
        return out
1148 1149


1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
def distribute_fpn_proposals(
    fpn_rois,
    min_level,
    max_level,
    refer_level,
    refer_scale,
    pixel_offset=False,
    rois_num=None,
    name=None,
):
1160
    r"""
1161 1162

    In Feature Pyramid Networks (FPN) models, it is needed to distribute
1163 1164 1165
    all proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order of
    proposals, we return an array which indicates the original index of rois
1166
    in current proposals. To compute FPN level for each roi, the formula is given as follows:
1167

1168
    .. math::
1169 1170 1171
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)} \\
        level &= floor(\log(\frac{roi\_scale}{refer\_scale}) + refer\_level)

1172 1173 1174 1175 1176
    where BBoxArea is a function to compute the area of each roi.

    Args:
        fpn_rois (Tensor): The input fpn_rois. 2-D Tensor with shape [N, 4] and data type can be
            float32 or float64.
1177
        min_level (int): The lowest level of FPN layer where the proposals come
1178 1179 1180 1181 1182
            from.
        max_level (int): The highest level of FPN layer where the proposals
            come from.
        refer_level (int): The referring level of FPN layer with specified scale.
        refer_scale (int): The referring scale of FPN layer with specified level.
1183
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of
1184
            image shape will be 1. 'False' by default.
1185
        rois_num (Tensor, optional): 1-D Tensor contains the number of RoIs in each image.
1186
            The shape is [B] and data type is int32. B is the number of images.
1187
            If rois_num not None, it will return a list of 1-D Tensor. Each element
1188 1189
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
1190 1191 1192
        name (str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1193 1194

    Returns:
1195 1196 1197 1198 1199 1200 1201
        - multi_rois (List), The proposals in each FPN level. It is a list of 2-D Tensor with shape [M, 4], where M is
          and data type is same as `fpn_rois` . The length is max_level-min_level+1.
        - restore_ind (Tensor), The index used to restore the order of fpn_rois. It is a 2-D Tensor with shape [N, 1]
          , where N is the number of total rois. The data type is int32.
        - rois_num_per_level (List), A list of 1-D Tensor and each Tensor is
          the RoIs' number in each image on the corresponding level. The shape
          is [B] and data type of int32, where B is the number of images.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    Examples:
        .. code-block:: python

            import paddle

            fpn_rois = paddle.rand((10, 4))
            rois_num = paddle.to_tensor([3, 1, 4, 2], dtype=paddle.int32)

            multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
1218

1219 1220 1221
    """
    num_lvl = max_level - min_level + 1

1222
    if in_dygraph_mode():
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        assert (
            rois_num is not None
        ), "rois_num should not be None in dygraph mode."
        (
            multi_rois,
            rois_num_per_level,
            restore_ind,
        ) = _C_ops.distribute_fpn_proposals(
            fpn_rois,
            rois_num,
            min_level,
            max_level,
            refer_level,
            refer_scale,
            pixel_offset,
        )
1239 1240
        return multi_rois, restore_ind, rois_num_per_level

1241
    else:
1242 1243 1244 1245 1246 1247
        check_variable_and_dtype(
            fpn_rois,
            'fpn_rois',
            ['float32', 'float64'],
            'distribute_fpn_proposals',
        )
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        helper = LayerHelper('distribute_fpn_proposals', **locals())
        dtype = helper.input_dtype('fpn_rois')
        multi_rois = [
            helper.create_variable_for_type_inference(dtype)
            for i in range(num_lvl)
        ]

        restore_ind = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'FpnRois': fpn_rois}
        outputs = {
            'MultiFpnRois': multi_rois,
            'RestoreIndex': restore_ind,
        }

        if rois_num is not None:
            inputs['RoisNum'] = rois_num
            rois_num_per_level = [
                helper.create_variable_for_type_inference(dtype='int32')
                for i in range(num_lvl)
            ]
            outputs['MultiLevelRoIsNum'] = rois_num_per_level
        else:
            rois_num_per_level = None

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        helper.append_op(
            type='distribute_fpn_proposals',
            inputs=inputs,
            outputs=outputs,
            attrs={
                'min_level': min_level,
                'max_level': max_level,
                'refer_level': refer_level,
                'refer_scale': refer_scale,
                'pixel_offset': pixel_offset,
            },
        )
1285 1286 1287
        return multi_rois, restore_ind, rois_num_per_level


1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
def read_file(filename, name=None):
    """
    Reads and outputs the bytes contents of a file as a uint8 Tensor
    with one dimension.

    Args:
        filename (str): Path of the file to be read.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        A uint8 tensor.

    Examples:
        .. code-block:: python

            import cv2
            import paddle

1308
            fake_img = (paddle.rand((400, 300, 3)).numpy() * 255).astype('uint8')
1309 1310 1311 1312

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
1313

1314
            print(img_bytes.shape)
1315
            # [142915]
1316 1317
    """

姜永久 已提交
1318
    if in_dygraph_mode():
1319
        return _legacy_C_ops.read_file('filename', filename)
姜永久 已提交
1320 1321 1322
    else:
        inputs = dict()
        attrs = {'filename': filename}
1323

姜永久 已提交
1324 1325 1326 1327 1328
        helper = LayerHelper("read_file", **locals())
        out = helper.create_variable_for_type_inference('uint8')
        helper.append_op(
            type="read_file", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
1329

姜永久 已提交
1330
        return out
1331 1332 1333 1334


def decode_jpeg(x, mode='unchanged', name=None):
    """
1335 1336
    Decodes a JPEG image into a 3 dimensional RGB Tensor or 1 dimensional Gray Tensor.
    Optionally converts the image to the desired format.
1337 1338 1339
    The values of the output tensor are uint8 between 0 and 255.

    Args:
1340
        x (Tensor): A one dimensional uint8 tensor containing the raw bytes
1341
            of the JPEG image.
1342
        mode (str, optional): The read mode used for optionally converting the image.
1343 1344 1345 1346 1347 1348 1349 1350 1351
            Default: 'unchanged'.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A decoded image tensor with shape (imge_channels, image_height, image_width)

    Examples:
        .. code-block:: python
1352 1353

            # required: gpu
1354
            import cv2
1355
            import numpy as np
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            import paddle

            fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')

            cv2.imwrite('fake.jpg', fake_img)

            img_bytes = paddle.vision.ops.read_file('fake.jpg')
            img = paddle.vision.ops.decode_jpeg(img_bytes)

            print(img.shape)
    """
Y
YuanRisheng 已提交
1368 1369
    if in_dygraph_mode():
        return _C_ops.decode_jpeg(x, mode, _current_expected_place())
姜永久 已提交
1370 1371 1372
    else:
        inputs = {'X': x}
        attrs = {"mode": mode}
1373

姜永久 已提交
1374 1375 1376 1377 1378
        helper = LayerHelper("decode_jpeg", **locals())
        out = helper.create_variable_for_type_inference('uint8')
        helper.append_op(
            type="decode_jpeg", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
1379

姜永久 已提交
1380
        return out
1381 1382 1383 1384 1385


def psroi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
1386
    position-sensitive average pooling on regions of interest specified by input. It performs
1387 1388 1389 1390 1391 1392 1393
    on inputs of nonuniform sizes to obtain fixed-size feature maps.

    PSROIPooling is proposed by R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.

    Args:
        x (Tensor): Input features with shape (N, C, H, W). The data type can be float32 or float64.
        boxes (Tensor): Box coordinates of ROIs (Regions of Interest) to pool over. It should be
1394
                         a 2-D Tensor with shape (num_rois, 4). Given as [[x1, y1, x2, y2], ...],
1395 1396 1397
                         (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in the batch.
1398
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1399
                               is int32. If int, H and W are both equal to output_size.
1400
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                               input scale to the scale used when pooling. Default: 1.0
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`

    Returns:
        4-D Tensor. The pooled ROIs with shape (num_rois, output_channels, pooled_h, pooled_w).
        The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Examples:
        .. code-block:: python
1412

1413 1414 1415 1416 1417
            import paddle
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = paddle.vision.ops.psroi_pool(x, boxes, boxes_num, 7, 1.0)
1418 1419
            print(pool_out.shape)
            # [3, 10, 7, 7]
1420 1421 1422 1423 1424 1425
    """

    check_type(output_size, 'output_size', (int, tuple, list), 'psroi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)
    pooled_height, pooled_width = output_size
1426
    assert len(x.shape) == 4, "Input features with shape should be (N, C, H, W)"
1427 1428
    if pooled_height * pooled_width == 0:
        raise ValueError('output_size should not contain 0.')
1429
    output_channels = int(x.shape[1] / (pooled_height * pooled_width))
Z
zyfncg 已提交
1430
    if in_dygraph_mode():
1431 1432 1433 1434 1435 1436 1437 1438 1439
        return _C_ops.psroi_pool(
            x,
            boxes,
            boxes_num,
            pooled_height,
            pooled_width,
            output_channels,
            spatial_scale,
        )
姜永久 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    else:
        helper = LayerHelper('psroi_pool', **locals())
        dtype = helper.input_dtype()
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='psroi_pool',
            inputs={'X': x, 'ROIs': boxes},
            outputs={'Out': out},
            attrs={
                'output_channels': output_channels,
                'spatial_scale': spatial_scale,
                'pooled_height': pooled_height,
                'pooled_width': pooled_width,
            },
1454
        )
姜永久 已提交
1455
        return out
1456 1457 1458 1459 1460 1461 1462 1463


class PSRoIPool(Layer):
    """
    This interface is used to construct a callable object of the ``PSRoIPool`` class. Please
    refer to :ref:`api_paddle_vision_ops_psroi_pool`.

    Args:
1464
        output_size (int|Tuple(int, int))  The pooled output size(H, W), data type
1465
                               is int32. If int, H and W are both equal to output_size.
1466
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
                               input scale to the scale used when pooling. Default: 1.0.

    Shape:
        - x: 4-D Tensor with shape (N, C, H, W).
        - boxes: 2-D Tensor with shape (num_rois, 4).
        - boxes_num: 1-D Tensor.
        - output: 4-D tensor with shape (num_rois, output_channels, pooled_h, pooled_w).
              The output_channels equal to C / (pooled_h * pooled_w), where C is the channels of input.

    Returns:
1477
        None.
1478 1479 1480

    Examples:
        .. code-block:: python
1481

1482
            import paddle
1483

1484 1485 1486 1487 1488
            psroi_module = paddle.vision.ops.PSRoIPool(7, 1.0)
            x = paddle.uniform([2, 490, 28, 28], dtype='float32')
            boxes = paddle.to_tensor([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], dtype='float32')
            boxes_num = paddle.to_tensor([1, 2], dtype='int32')
            pool_out = psroi_module(x, boxes, boxes_num)
1489
            print(pool_out.shape) # [3, 10, 7, 7]
1490 1491 1492
    """

    def __init__(self, output_size, spatial_scale=1.0):
1493
        super().__init__()
1494 1495 1496 1497
        self.output_size = output_size
        self.spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
1498 1499 1500
        return psroi_pool(
            x, boxes, boxes_num, self.output_size, self.spatial_scale
        )
W
Wenyu 已提交
1501 1502 1503 1504 1505 1506


def roi_pool(x, boxes, boxes_num, output_size, spatial_scale=1.0, name=None):
    """
    This operator implements the roi_pooling layer.
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
1507
    The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w) 2. Finding the largest value in each section 3. Copying these max values to the output buffer
W
Wenyu 已提交
1508 1509 1510
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn.

    Args:
1511 1512
        x (Tensor): input feature, 4D-Tensor with the shape of [N,C,H,W],
            where N is the batch size, C is the input channel, H is Height, W is weight.
W
Wenyu 已提交
1513
            The data type is float32 or float64.
1514 1515 1516
        boxes (Tensor): boxes (Regions of Interest) to pool over.
            2D-Tensor with the shape of [num_boxes,4].
            Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
W
Wenyu 已提交
1517
            and (x2, y2) is the bottom right coordinates.
1518
        boxes_num (Tensor): the number of RoIs in each image, data type is int32.
W
Wenyu 已提交
1519
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
1520 1521
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.
        name(str, optional): for detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Default: None.
W
Wenyu 已提交
1522 1523

    Returns:
1524
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import roi_pool

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            pool_out = roi_pool(data, boxes, boxes_num=boxes_num, output_size=3)
            assert pool_out.shape == [3, 256, 3, 3], ''
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
Z
zyfncg 已提交
1546
    if in_dygraph_mode():
1547 1548 1549 1550 1551 1552
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
        return _C_ops.roi_pool(
            x, boxes, boxes_num, pooled_height, pooled_width, spatial_scale
        )
W
Wenyu 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    else:
        check_variable_and_dtype(x, 'x', ['float32'], 'roi_pool')
        check_variable_and_dtype(boxes, 'boxes', ['float32'], 'roi_pool')
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        helper.append_op(
            type="roi_pool",
            inputs=inputs,
            outputs={"Out": pool_out, "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale,
            },
        )
W
Wenyu 已提交
1577 1578 1579 1580 1581 1582
        return pool_out


class RoIPool(Layer):
    """
    This interface is used to construct a callable object of the `RoIPool` class. Please
1583
    refer to :ref:`api_paddle_vision_ops_roi_pool`.
W
Wenyu 已提交
1584 1585 1586 1587 1588 1589

    Args:
        output_size (int or tuple[int, int]): the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float, optional): multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0.

    Returns:
1590
        pool_out (Tensor): the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]].
W
Wenyu 已提交
1591 1592 1593 1594 1595 1596

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.ops import RoIPool
1597

W
Wenyu 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_pool = RoIPool(output_size=(4, 3))
            pool_out = roi_pool(data, boxes, boxes_num)
            assert pool_out.shape == [3, 256, 4, 3], ''
    """

    def __init__(self, output_size, spatial_scale=1.0):
1609
        super().__init__()
W
Wenyu 已提交
1610 1611 1612 1613
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num):
1614 1615 1616 1617 1618 1619 1620
        return roi_pool(
            x=x,
            boxes=boxes,
            boxes_num=boxes_num,
            output_size=self._output_size,
            spatial_scale=self._spatial_scale,
        )
W
Wenyu 已提交
1621 1622 1623 1624

    def extra_repr(self):
        main_str = 'output_size={_output_size}, spatial_scale={_spatial_scale}'
        return main_str.format(**self.__dict__)
F
Feng Ni 已提交
1625 1626


1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
def roi_align(
    x,
    boxes,
    boxes_num,
    output_size,
    spatial_scale=1.0,
    sampling_ratio=-1,
    aligned=True,
    name=None,
):
F
Feng Ni 已提交
1637
    """
1638
    Implementing the roi_align layer.
F
Feng Ni 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647
    Region of Interest (RoI) Align operator (also known as RoI Align) is to
    perform bilinear interpolation on inputs of nonuniform sizes to obtain
    fixed-size feature maps (e.g. 7*7), as described in Mask R-CNN.

    Dividing each region proposal into equal-sized sections with the pooled_width
    and pooled_height. Location remains the origin result.

    In each ROI bin, the value of the four regularly sampled locations are
    computed directly through bilinear interpolation. The output is the mean of
1648
    four locations. Thus avoid the misaligned problem.
F
Feng Ni 已提交
1649 1650

    Args:
1651
        x (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
F
Feng Ni 已提交
1652 1653
            where N is the batch size, C is the input channel, H is Height,
            W is weight. The data type is float32 or float64.
1654
        boxes (Tensor): Boxes (RoIs, Regions of Interest) to pool over. It
F
Feng Ni 已提交
1655 1656 1657 1658 1659 1660 1661
            should be a 2-D Tensor of shape (num_boxes, 4). The data type is
            float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
            the top left coordinates, and (x2, y2) is the bottom right coordinates.
        boxes_num (Tensor): The number of boxes contained in each picture in
            the batch, the data type is int32.
        output_size (int or Tuple[int, int]): The pooled output size(h, w), data
            type is int32. If int, h and w are both equal to output_size.
1662
        spatial_scale (float32, optional): Multiplicative spatial scale factor to translate
F
Feng Ni 已提交
1663
            ROI coords from their input scale to the scale used when pooling.
1664 1665
            Default: 1.0.
        sampling_ratio (int32, optional): number of sampling points in the interpolation
F
Feng Ni 已提交
1666 1667 1668 1669 1670
            grid used to compute the output value of each pooled output bin.
            If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling
            points per bin are used.
            If <= 0, then an adaptive number of grid points are used (computed
            as ``ceil(roi_width / output_width)``, and likewise for height).
1671 1672
            Default: -1.
        aligned (bool, optional): If False, use the legacy implementation. If True, pixel
F
Feng Ni 已提交
1673 1674
            shift the box coordinates it by -0.5 for a better alignment with the
            two neighboring pixel indices. This version is used in Detectron2.
1675
            Default: True.
F
Feng Ni 已提交
1676 1677
        name(str, optional): For detailed information, please refer to :
            ref:`api_guide_Name`. Usually name is no need to set and None by
1678
            default. Default: None.
F
Feng Ni 已提交
1679 1680

    Returns:
1681
        The output of ROIAlignOp is a 4-D tensor with shape (num_boxes,\
F
Feng Ni 已提交
1682 1683 1684 1685
            channels, pooled_h, pooled_w). The data type is float32 or float64.

    Examples:
        .. code-block:: python
1686

F
Feng Ni 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
            import paddle
            from paddle.vision.ops import roi_align

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            align_out = roi_align(data, boxes, boxes_num, output_size=3)
            assert align_out.shape == [3, 256, 3, 3]
    """

    check_type(output_size, 'output_size', (int, tuple), 'roi_align')
    if isinstance(output_size, int):
        output_size = (output_size, output_size)

    pooled_height, pooled_width = output_size
1704
    if in_dygraph_mode():
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        assert (
            boxes_num is not None
        ), "boxes_num should not be None in dygraph mode."
        return _C_ops.roi_align(
            x,
            boxes,
            boxes_num,
            pooled_height,
            pooled_width,
            spatial_scale,
            sampling_ratio,
            aligned,
        )
F
Feng Ni 已提交
1718 1719
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'roi_align')
1720 1721 1722
        check_variable_and_dtype(
            boxes, 'boxes', ['float32', 'float64'], 'roi_align'
        )
F
Feng Ni 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731
        helper = LayerHelper('roi_align', **locals())
        dtype = helper.input_dtype()
        align_out = helper.create_variable_for_type_inference(dtype)
        inputs = {
            "X": x,
            "ROIs": boxes,
        }
        if boxes_num is not None:
            inputs['RoisNum'] = boxes_num
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
        helper.append_op(
            type="roi_align",
            inputs=inputs,
            outputs={"Out": align_out},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale,
                "sampling_ratio": sampling_ratio,
                "aligned": aligned,
            },
        )
F
Feng Ni 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
        return align_out


class RoIAlign(Layer):
    """
    This interface is used to construct a callable object of the `RoIAlign` class.
    Please refer to :ref:`api_paddle_vision_ops_roi_align`.

    Args:
        output_size (int or tuple[int, int]): The pooled output size(h, w),
            data type is int32. If int, h and w are both equal to output_size.
        spatial_scale (float32, optional): Multiplicative spatial scale factor
            to translate ROI coords from their input scale to the scale used
1757
            when pooling. Default: 1.0.
F
Feng Ni 已提交
1758 1759

    Returns:
1760
        The output of ROIAlign operator is a 4-D tensor with \
F
Feng Ni 已提交
1761 1762 1763 1764
            shape (num_boxes, channels, pooled_h, pooled_w).

    Examples:
        ..  code-block:: python
1765

F
Feng Ni 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
            import paddle
            from paddle.vision.ops import RoIAlign

            data = paddle.rand([1, 256, 32, 32])
            boxes = paddle.rand([3, 4])
            boxes[:, 2] += boxes[:, 0] + 3
            boxes[:, 3] += boxes[:, 1] + 4
            boxes_num = paddle.to_tensor([3]).astype('int32')
            roi_align = RoIAlign(output_size=(4, 3))
            align_out = roi_align(data, boxes, boxes_num)
            assert align_out.shape == [3, 256, 4, 3]
    """

    def __init__(self, output_size, spatial_scale=1.0):
1780
        super().__init__()
F
Feng Ni 已提交
1781 1782 1783 1784
        self._output_size = output_size
        self._spatial_scale = spatial_scale

    def forward(self, x, boxes, boxes_num, aligned=True):
1785 1786 1787 1788 1789 1790 1791 1792
        return roi_align(
            x=x,
            boxes=boxes,
            boxes_num=boxes_num,
            output_size=self._output_size,
            spatial_scale=self._spatial_scale,
            aligned=aligned,
        )
N
Nyakku Shigure 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802


class ConvNormActivation(Sequential):
    """
    Configurable block used for Convolution-Normalzation-Activation blocks.
    This code is based on the torchvision code with modifications.
    You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L68
    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
1803 1804 1805
        kernel_size: (int|list|tuple, optional): Size of the convolving kernel. Default: 3
        stride (int|list|tuple, optional): Stride of the convolution. Default: 1
        padding (int|str|tuple|list, optional): Padding added to all four sides of the input. Default: None,
N
Nyakku Shigure 已提交
1806 1807 1808
            in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., paddle.nn.Layer], optional): Norm layer that will be stacked on top of the convolutiuon layer.
1809
            If ``None`` this layer wont be used. Default: ``paddle.nn.BatchNorm2D``
N
Nyakku Shigure 已提交
1810 1811 1812 1813 1814 1815
        activation_layer (Callable[..., paddle.nn.Layer], optional): Activation function which will be stacked on top of the normalization
            layer (if not ``None``), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``paddle.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    """

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=3,
        stride=1,
        padding=None,
        groups=1,
        norm_layer=BatchNorm2D,
        activation_layer=ReLU,
        dilation=1,
        bias=None,
    ):
N
Nyakku Shigure 已提交
1829 1830 1831 1832 1833
        if padding is None:
            padding = (kernel_size - 1) // 2 * dilation
        if bias is None:
            bias = norm_layer is None
        layers = [
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
            Conv2D(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                dilation=dilation,
                groups=groups,
                bias_attr=bias,
            )
N
Nyakku Shigure 已提交
1844 1845 1846 1847 1848 1849
        ]
        if norm_layer is not None:
            layers.append(norm_layer(out_channels))
        if activation_layer is not None:
            layers.append(activation_layer())
        super().__init__(*layers)
1850 1851


1852 1853 1854 1855 1856 1857 1858 1859
def nms(
    boxes,
    iou_threshold=0.3,
    scores=None,
    category_idxs=None,
    categories=None,
    top_k=None,
):
1860 1861
    r"""
    This operator implements non-maximum suppression. Non-maximum suppression (NMS)
1862 1863 1864
    is used to select one bounding box out of many overlapping bounding boxes in object detection.
    Boxes with IoU > iou_threshold will be considered as overlapping boxes,
    just one with highest score can be kept. Here IoU is Intersection Over Union,
1865 1866 1867 1868 1869 1870 1871
    which can be computed by:

    ..  math::

        IoU = \frac{intersection\_area(box1, box2)}{union\_area(box1, box2)}

    If scores are provided, input boxes will be sorted by their scores firstly.
R
RichardWooSJTU 已提交
1872

1873
    If category_idxs and categories are provided, NMS will be performed with a batched style,
1874 1875
    which means NMS will be applied to each category respectively and results of each category
    will be concated and sorted by scores.
1876

1877 1878 1879
    If K is provided, only the first k elements will be returned. Otherwise, all box indices sorted by scores will be returned.

    Args:
1880 1881 1882 1883
        boxes(Tensor): The input boxes data to be computed, it's a 2D-Tensor with
            the shape of [num_boxes, 4]. The data type is float32 or float64.
            Given as [[x1, y1, x2, y2], …],  (x1, y1) is the top left coordinates,
            and (x2, y2) is the bottom right coordinates.
1884
            Their relation should be ``0 <= x1 < x2 && 0 <= y1 < y2``.
R
RichardWooSJTU 已提交
1885
        iou_threshold(float32, optional): IoU threshold for determine overlapping boxes. Default value: 0.3.
1886
        scores(Tensor, optional): Scores corresponding to boxes, it's a 1D-Tensor with
R
RichardWooSJTU 已提交
1887
            shape of [num_boxes]. The data type is float32 or float64. Default: None.
1888
        category_idxs(Tensor, optional): Category indices corresponding to boxes.
R
RichardWooSJTU 已提交
1889 1890
            it's a 1D-Tensor with shape of [num_boxes]. The data type is int64. Default: None.
        categories(List, optional): A list of unique id of all categories. The data type is int64. Default: None.
1891
        top_k(int64, optional): The top K boxes who has higher score and kept by NMS preds to
R
RichardWooSJTU 已提交
1892
            consider. top_k should be smaller equal than num_boxes. Default: None.
1893 1894 1895 1896 1897 1898

    Returns:
        Tensor: 1D-Tensor with the shape of [num_boxes]. Indices of boxes kept by NMS.

    Examples:
        .. code-block:: python
1899

1900 1901
            import paddle

1902
            boxes = paddle.rand([4, 4]).astype('float32')
1903 1904
            boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
            boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
1905 1906 1907 1908 1909 1910
            print(boxes)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.64811575, 0.89756244, 0.86473107, 1.48552322],
            #         [0.48085716, 0.84799081, 0.54517937, 0.86396021],
            #         [0.62646860, 0.72901905, 1.17392159, 1.69691563],
            #         [0.89729202, 0.46281594, 1.88733089, 0.98588502]])
1911

1912 1913 1914 1915
            out = paddle.vision.ops.nms(boxes, 0.1)
            print(out)
            # Tensor(shape=[3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 3])
1916

1917
            scores = paddle.to_tensor([0.6, 0.7, 0.4, 0.233])
1918 1919

            categories = [0, 1, 2, 3]
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
            category_idxs = paddle.to_tensor([2, 0, 0, 3], dtype="int64")

            out = paddle.vision.ops.nms(boxes,
                                        0.1,
                                        paddle.to_tensor(scores),
                                        paddle.to_tensor(category_idxs),
                                        categories,
                                        4)
            print(out)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 0, 2, 3])
1931 1932 1933
    """

    def _nms(boxes, iou_threshold):
1934
        if in_dygraph_mode():
1935
            return _C_ops.nms(boxes, iou_threshold)
1936

姜永久 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        else:
            helper = LayerHelper('nms', **locals())
            out = helper.create_variable_for_type_inference('int64')
            helper.append_op(
                type='nms',
                inputs={'Boxes': boxes},
                outputs={'KeepBoxesIdxs': out},
                attrs={'iou_threshold': iou_threshold},
            )
            return out
1947 1948 1949 1950 1951

    if scores is None:
        return _nms(boxes, iou_threshold)

    import paddle
1952

1953 1954
    if category_idxs is None:
        sorted_global_indices = paddle.argsort(scores, descending=True)
1955 1956 1957
        sorted_keep_boxes_indices = _nms(
            boxes[sorted_global_indices], iou_threshold
        )
1958
        return sorted_global_indices[sorted_keep_boxes_indices]
1959 1960

    if top_k is not None:
1961 1962 1963 1964 1965 1966
        assert (
            top_k <= scores.shape[0]
        ), "top_k should be smaller equal than the number of boxes"
    assert (
        categories is not None
    ), "if category_idxs is given, categories which is a list of unique id of all categories is necessary"
1967 1968 1969 1970 1971 1972

    mask = paddle.zeros_like(scores, dtype=paddle.int32)

    for category_id in categories:
        cur_category_boxes_idxs = paddle.where(category_idxs == category_id)[0]
        shape = cur_category_boxes_idxs.shape[0]
1973 1974 1975
        cur_category_boxes_idxs = paddle.reshape(
            cur_category_boxes_idxs, [shape]
        )
1976 1977 1978 1979 1980 1981 1982
        if shape == 0:
            continue
        elif shape == 1:
            mask[cur_category_boxes_idxs] = 1
            continue
        cur_category_boxes = boxes[cur_category_boxes_idxs]
        cur_category_scores = scores[cur_category_boxes_idxs]
1983 1984 1985
        cur_category_sorted_indices = paddle.argsort(
            cur_category_scores, descending=True
        )
1986
        cur_category_sorted_boxes = cur_category_boxes[
1987 1988
            cur_category_sorted_indices
        ]
1989

1990 1991 1992
        cur_category_keep_boxes_sub_idxs = cur_category_sorted_indices[
            _nms(cur_category_sorted_boxes, iou_threshold)
        ]
1993 1994 1995

        updates = paddle.ones_like(
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
1996 1997
            dtype=paddle.int32,
        )
1998 1999 2000 2001
        mask = paddle.scatter(
            mask,
            cur_category_boxes_idxs[cur_category_keep_boxes_sub_idxs],
            updates,
2002 2003
            overwrite=True,
        )
2004 2005 2006
    keep_boxes_idxs = paddle.where(mask)[0]
    shape = keep_boxes_idxs.shape[0]
    keep_boxes_idxs = paddle.reshape(keep_boxes_idxs, [shape])
2007 2008 2009
    sorted_sub_indices = paddle.argsort(
        scores[keep_boxes_idxs], descending=True
    )
2010 2011 2012 2013

    if top_k is None:
        return keep_boxes_idxs[sorted_sub_indices]

姜永久 已提交
2014
    if in_dygraph_mode():
2015 2016 2017 2018 2019
        top_k = shape if shape < top_k else top_k
        _, topk_sub_indices = paddle.topk(scores[keep_boxes_idxs], top_k)
        return keep_boxes_idxs[topk_sub_indices]

    return keep_boxes_idxs[sorted_sub_indices][:top_k]
2020 2021


2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
def generate_proposals(
    scores,
    bbox_deltas,
    img_size,
    anchors,
    variances,
    pre_nms_top_n=6000,
    post_nms_top_n=1000,
    nms_thresh=0.5,
    min_size=0.1,
    eta=1.0,
    pixel_offset=False,
    return_rois_num=False,
    name=None,
):
2037 2038
    """
    This operation proposes RoIs according to each box with their
2039 2040
    probability to be a foreground object. And
    the proposals of RPN output are  calculated by anchors, bbox_deltas and scores. Final proposals
2041 2042 2043 2044 2045 2046
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

    1. Transpose and resize scores and bbox_deltas in size of
       (H * W * A, 1) and (H * W * A, 4)
2047
    2. Calculate box locations as proposals candidates.
2048
    3. Clip boxes to image
2049
    4. Remove predicted boxes with small area.
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    5. Apply non-maximum suppression (NMS) to get final proposals as output.

    Args:
        scores (Tensor): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map. The data type must be float32.
        bbox_deltas (Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the difference between predicted box location and
            anchor location. The data type must be float32.
        img_size (Tensor): A 2-D Tensor with shape [N, 2] represents origin
            image shape information for N batch, including height and width of the input sizes.
            The data type can be float32 or float64.
        anchors (Tensor):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances (Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format. The data type must be float32.
        pre_nms_top_n (float, optional): Number of total bboxes to be kept per
            image before NMS. `6000` by default.
        post_nms_top_n (float, optional): Number of total bboxes to be kept per
            image after NMS. `1000` by default.
        nms_thresh (float, optional): Threshold in NMS. The data type must be float32. `0.5` by default.
        min_size (float, optional): Remove predicted boxes with either height or
            width less than this value. `0.1` by default.
        eta(float, optional): Apply in adaptive NMS, only works if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration. 1.0 by default.
        pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of `img_size` will be 1. 'False' by default.
        return_rois_num (bool, optional): Whether to return `rpn_rois_num` . When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
            num of each image in one batch. 'False' by default.
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.

    Returns:
        - rpn_rois (Tensor): The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_roi_probs (Tensor): The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - rpn_rois_num (Tensor): Rois's num of each image in one batch. 1-D Tensor with shape ``[B,]`` while ``B`` is the batch size. And its sum equals to RoIs number ``N`` .

    Examples:
        .. code-block:: python

            import paddle

            scores = paddle.rand((2,4,5,5), dtype=paddle.float32)
            bbox_deltas = paddle.rand((2, 16, 5, 5), dtype=paddle.float32)
            img_size = paddle.to_tensor([[224.0, 224.0], [224.0, 224.0]])
            anchors = paddle.rand((2,5,4,4), dtype=paddle.float32)
            variances = paddle.rand((2,5,10,4), dtype=paddle.float32)
            rois, roi_probs, roi_nums = paddle.vision.ops.generate_proposals(scores, bbox_deltas,
                         img_size, anchors, variances, return_rois_num=True)
            print(rois, roi_probs, roi_nums)
    """

Z
zhiboniu 已提交
2106
    if in_dygraph_mode():
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        assert (
            return_rois_num
        ), "return_rois_num should be True in dygraph mode."
        attrs = (
            pre_nms_top_n,
            post_nms_top_n,
            nms_thresh,
            min_size,
            eta,
            pixel_offset,
        )
2118
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
2119 2120
            scores, bbox_deltas, img_size, anchors, variances, *attrs
        )
Z
zhiboniu 已提交
2121 2122

        return rpn_rois, rpn_roi_probs, rpn_rois_num
姜永久 已提交
2123 2124 2125 2126 2127
    else:
        helper = LayerHelper('generate_proposals_v2', **locals())

        check_variable_and_dtype(
            scores, 'scores', ['float32'], 'generate_proposals_v2'
2128
        )
姜永久 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        check_variable_and_dtype(
            bbox_deltas, 'bbox_deltas', ['float32'], 'generate_proposals_v2'
        )
        check_variable_and_dtype(
            img_size,
            'img_size',
            ['float32', 'float64'],
            'generate_proposals_v2',
        )
        check_variable_and_dtype(
            anchors, 'anchors', ['float32'], 'generate_proposals_v2'
        )
        check_variable_and_dtype(
            variances, 'variances', ['float32'], 'generate_proposals_v2'
2143
        )
2144

姜永久 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
        rpn_rois = helper.create_variable_for_type_inference(
            dtype=bbox_deltas.dtype
        )
        rpn_roi_probs = helper.create_variable_for_type_inference(
            dtype=scores.dtype
        )
        outputs = {
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
        }
        if return_rois_num:
            rpn_rois_num = helper.create_variable_for_type_inference(
                dtype='int32'
            )
            rpn_rois_num.stop_gradient = True
            outputs['RpnRoisNum'] = rpn_rois_num
2161

姜永久 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
        helper.append_op(
            type="generate_proposals_v2",
            inputs={
                'Scores': scores,
                'BboxDeltas': bbox_deltas,
                'ImShape': img_size,
                'Anchors': anchors,
                'Variances': variances,
            },
            attrs={
                'pre_nms_topN': pre_nms_top_n,
                'post_nms_topN': post_nms_top_n,
                'nms_thresh': nms_thresh,
                'min_size': min_size,
                'eta': eta,
                'pixel_offset': pixel_offset,
            },
            outputs=outputs,
        )
        rpn_rois.stop_gradient = True
        rpn_roi_probs.stop_gradient = True
        if not return_rois_num:
            rpn_rois_num = None
2185

姜永久 已提交
2186
        return rpn_rois, rpn_roi_probs, rpn_rois_num
2187 2188


2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
def matrix_nms(
    bboxes,
    scores,
    score_threshold,
    post_threshold,
    nms_top_k,
    keep_top_k,
    use_gaussian=False,
    gaussian_sigma=2.0,
    background_label=0,
    normalized=True,
    return_index=False,
    return_rois_num=True,
    name=None,
):
2204
    """
2205

2206 2207 2208 2209 2210 2211 2212
    This operator does matrix non maximum suppression (NMS).
    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.
2213

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    Args:
        bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Tensor): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
2237 2238 2239
        use_gaussian (bool, optional): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float, optional): Sigma for Gaussian decay function. Default: 2.0
        background_label (int, optional): The index of background label, the background
2240 2241
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
2242 2243 2244 2245
        normalized (bool, optional): Whether detections are normalized. Default: True
        return_index(bool, optional): Whether return selected index. Default: False
        return_rois_num(bool, optional): whether return rois_num. Default: True
        name(str, optional): Name of the matrix nms op. Default: None.
2246
    Returns:
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        - A tuple with three Tensor, (Out, Index, RoisNum) if return_index is True,
          otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
        - Out (Tensor), A 2-D Tensor with shape [No, 6] containing the
          detection results.
          Each row has 6 values, [label, confidence, xmin, ymin, xmax, ymax]
        - Index (Tensor), A 2-D Tensor with shape [No, 1] containing the
          selected indices, which are absolute values cross batches.
        - rois_num (Tensor), A 1-D Tensor with shape [N] containing
          the number of detected boxes in each image.

2257 2258
    Examples:
        .. code-block:: python
2259

2260 2261
            import paddle
            from paddle.vision.ops import matrix_nms
2262

2263 2264 2265 2266 2267 2268 2269
            boxes = paddle.rand([4, 1, 4])
            boxes[..., 2] = boxes[..., 0] + boxes[..., 2]
            boxes[..., 3] = boxes[..., 1] + boxes[..., 3]
            scores = paddle.rand([4, 80, 1])
            out = matrix_nms(bboxes=boxes, scores=scores, background_label=0,
                                 score_threshold=0.5, post_threshold=0.1,
                                 nms_top_k=400, keep_top_k=200, normalized=False)
2270

2271 2272
    """
    if in_dygraph_mode():
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
        out, index, rois_num = _C_ops.matrix_nms(
            bboxes,
            scores,
            score_threshold,
            nms_top_k,
            keep_top_k,
            post_threshold,
            use_gaussian,
            gaussian_sigma,
            background_label,
            normalized,
        )
Z
zhiboniu 已提交
2285 2286 2287 2288 2289
        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return out, rois_num, index
2290
    else:
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
        check_variable_and_dtype(
            bboxes, 'BBoxes', ['float32', 'float64'], 'matrix_nms'
        )
        check_variable_and_dtype(
            scores, 'Scores', ['float32', 'float64'], 'matrix_nms'
        )
        check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
        check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
        check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
        check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
        check_type(normalized, 'normalized', bool, 'matrix_nms')
        check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
        check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
        check_type(background_label, 'background_label', int, 'matrix_nms')
2305 2306 2307 2308 2309 2310 2311 2312
        helper = LayerHelper('matrix_nms', **locals())
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')
        outputs = {'Out': output, 'Index': index}
        if return_rois_num:
            rois_num = helper.create_variable_for_type_inference(dtype='int32')
            outputs['RoisNum'] = rois_num

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
        helper.append_op(
            type="matrix_nms",
            inputs={'BBoxes': bboxes, 'Scores': scores},
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'post_threshold': post_threshold,
                'nms_top_k': nms_top_k,
                'gaussian_sigma': gaussian_sigma,
                'use_gaussian': use_gaussian,
                'keep_top_k': keep_top_k,
                'normalized': normalized,
            },
            outputs=outputs,
        )
2328 2329 2330 2331 2332 2333 2334
        output.stop_gradient = True

        if not return_index:
            index = None
        if not return_rois_num:
            rois_num = None
        return output, rois_num, index