pool_op.cc 27.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
28 29
  int output_size;
  if (!ceil_mode) {
30 31
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
32 33
  } else {
    output_size =
34 35 36
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
37
  }
38 39
  PADDLE_ENFORCE_GT(
      output_size, 0,
40 41 42 43 44 45
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
46 47 48
  return output_size;
}

C
chengduo 已提交
49
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
56

C
chengduoZH 已提交
57
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
58 59 60
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
61
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
62
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
63 64 65 66
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
67

68
  auto in_x_dims = ctx->GetInputDim("X");
69 70
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
71 72 73 74
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
75 76 77

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
97

98 99
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
100
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
101
                            (data_format == "NHWC" || data_format == "NDHWC");
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
118 119 120
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
121
    for (int i = 0; i < data_dims.size(); ++i) {
122
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
123
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
124
      } else {
125 126 127
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
128
      }
129
    }
130
  }
131 132 133 134 135 136 137 138 139 140

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

141
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
142
  ctx->ShareLoD("X", "Out");
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
bool CanMKLDNNSupportPool(const framework::ExecutionContext& ctx) {
  if (ctx.Attr<bool>("adaptive") == false) return true;
  // (jczaja): oneDNN is supporting only unchangable in size pool window
  auto src_tz = paddle::framework::vectorize(ctx.Input<Tensor>("X")->dims());
  std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
  // Fast but not exhustive check
  if ((src_tz[src_tz.size() - 1] % ksize[1] == 0) &&
      (src_tz[src_tz.size() - 2] % ksize[0] == 0))
    return true;

  // Exhustive check
  auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
  auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
  auto OH = static_cast<double>(ksize[0]);
  auto OW = static_cast<double>(ksize[1]);

  auto SH = static_cast<int>(floor((IH * 2.0) / OH) - floor(IH / OH));
  auto SW = static_cast<int>(floor((IW * 2.0) / OW) - floor(IW / OW));
  auto KH = static_cast<int>(ceil((IH * 2.0) / OH) - floor(IH / OH));
  auto KW = static_cast<int>(ceil((IW * 2.0) / OW) - floor(IW / OW));

  auto PH = (SH * (static_cast<int>(OH) - 1) + KH - static_cast<int>(IH));
  auto PW = (SW * (static_cast<int>(OW) - 1) + KW - static_cast<int>(IW));
  // If there is additional padding needed then
  // this is situation that oneDNN cannot comply with
  // paddlepaddle reference implementation
  return (PH == 0) && (PW == 0);
}

174
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
175
    const framework::ExecutionContext& ctx) const {
176
  framework::LibraryType library_{framework::LibraryType::kPlain};
177
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
178
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
179
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
180

181
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
182 183
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
184 185
  }
#endif
186 187
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
188
      this->CanMKLDNNBeUsed(ctx, data_type) && CanMKLDNNSupportPool(ctx)) {
189
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
190
    layout_ = framework::DataLayout::kMKLDNN;
191
  }
192
#endif
193

194
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
219
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
220 221 222
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
223
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
224 225
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
226 227 228
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

229
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
230
    const framework::ExecutionContext& ctx) const {
231
  framework::LibraryType library_{framework::LibraryType::kPlain};
232
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
233
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
234
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
235

236
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
237 238
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
239 240
  }
#endif
241 242
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
243 244
      this->CanMKLDNNBeUsed(ctx, input_data_type) &&
      CanMKLDNNSupportPool(ctx)) {
245
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
246
    layout_ = framework::DataLayout::kMKLDNN;
247
  }
248
#endif
249

K
Kexin Zhao 已提交
250 251
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
252 253
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
272
void Pool2dOpMaker::Make() {
273 274
  AddInput(
      "X",
C
chengduoZH 已提交
275
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
276 277 278
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
279
  AddOutput("Out",
K
kexinzhao 已提交
280 281 282 283
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
284
            "and W is the width of the feature.");
285

C
chengduoZH 已提交
286
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
287 288
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
289
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
290
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
291 292
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
293
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
294 295
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
296
  // TypedAttrChecker don't support vector type.)
297 298
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
299 300 301
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
302
      .SetDefault(false);
K
kexinzhao 已提交
303 304 305
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
306 307
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
308 309 310
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
311 312
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
313
      "If global_pooling = true, paddings and kernel size will be ignored.")
314
      .SetDefault({0, 0});
315 316
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
317
      "(bool) When true, will exclude the zero-padding in the "
318
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
319 320
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
321
      .SetDefault(true);
322 323
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
324
      "(bool) When true, will perform adaptive pooling instead, "
325 326
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
327 328
      "pooling in each grid area to get output pooling value. "
      "Default False.")
329 330
      .SetDefault(false);

331 332
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
333
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
D
Double_V 已提交
334 335
      .SetDefault(false)
      .AsExtra();
336 337
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
338
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
339
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
340
      "the floor function will be used. Default False")
341
      .SetDefault(false);
342
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
343
                "(bool) Only used in mkldnn kernel. Default False")
D
Double_V 已提交
344 345
      .SetDefault(false)
      .AsExtra();
346 347 348 349
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
D
Double_V 已提交
350 351
      .SetDefault(false)
      .AsExtra();
352 353 354 355
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
D
Double_V 已提交
356 357
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
358 359 360 361 362 363
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
364
      .SetDefault("NCHW");
365 366 367
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
D
Double_V 已提交
368 369
      .SetDefault(false)
      .AsExtra();
370

371 372 373 374 375 376
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
377
  // TODO(dzhwinter): need to registered layout transform function
378 379

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
380 381 382
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
383
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
384
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
385
These two elements represent height and width, respectively.
C
chengduoZH 已提交
386 387
The input(X) size and output(Out) size may be different.

388
Example:
F
fengjiayi 已提交
389

C
chengduoZH 已提交
390
  Input:
F
fengjiayi 已提交
391

K
kexinzhao 已提交
392
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
393

C
chengduoZH 已提交
394
  Output:
F
fengjiayi 已提交
395

K
kexinzhao 已提交
396
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

414 415
  For ceil_mode = false:
       $$
416
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
417 418
       $$
       $$
419
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
420
       $$
421

422 423
  For ceil_mode = true:
       $$
424
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
425 426
       $$
       $$
427
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
428
       $$
K
kexinzhao 已提交
429

430
  For exclusive = false:
431
       $$
432
       hstart = i * strides[0] - pad_height_top
433 434 435 436 437
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
438
       wstart = j * strides[1] - pad_width_left
439 440 441 442 443 444 445
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
446

447
  For exclusive = true:
448
       $$
449
       hstart = max(0, i * strides[0] - pad_height_top)
450 451 452 453 454
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
455
       wstart = max(0, j * strides[1] - pad_width_left)
456 457 458 459 460 461 462
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
463

464
)DOC");
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480
template <typename T>
class Pool2dOpGradGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("pool2d_grad_grad");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

C
chengduo 已提交
481 482
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
483
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
484
      const override {
485 486
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
487 488 489
  }
};

Y
Yu Yang 已提交
490
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
491 492
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
493 494
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
495 496 497
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
498
  AddOutput("Out",
C
chengduoZH 已提交
499
            "(Tensor) The output tensor of pooling operator."
500
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
501 502
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
503
            "width of the feature, respectively.");
504

C
chengduoZH 已提交
505
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
506
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
507
                       "and \"avg\" for average-pooling.")
508
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
509 510 511 512
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
513
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
514 515
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
516
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
517 518
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
519 520 521
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
522
      .SetDefault(false);
K
kexinzhao 已提交
523 524 525 526
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
527 528
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
529 530
  AddAttr<std::vector<int>>(
      "paddings",
531 532 533 534
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
535
      "If global_pooling = true, ksize and paddings will be ignored.")
536 537
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
538 539
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
540
      "(bool) When true, will exclude the zero-padding in the "
541
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
542 543
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
544
      .SetDefault(true);
545 546
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
547
      "(bool) When true, will perform adaptive pooling instead, "
548 549
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
550 551
      "pooling in each grid area to get output pooling value. "
      "Default False")
552
      .SetDefault(false);
553

554 555
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
556
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
D
Double_V 已提交
557 558
      .SetDefault(false)
      .AsExtra();
559 560
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
561
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
562
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
563
      "the floor function will be used. Default False")
564
      .SetDefault(false);
565
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
566
                "(bool) Only used in mkldnn kernel. Default False")
D
Double_V 已提交
567 568
      .SetDefault(false)
      .AsExtra();
569 570
  AddAttr<std::string>(
      "data_format",
571 572 573
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
574
      "the input will be transformed automatically. ")
575 576 577 578 579 580 581
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
582 583
  // TODO(dzhwinter): need to registered layout transform function

584
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
585 586
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
587
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
588
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
589 590
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
591
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
592 593 594

Example:
  Input:
K
kexinzhao 已提交
595
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
596
  Output:
K
kexinzhao 已提交
597
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

621
  For ceil_mode = false:
622
       $$
623
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
624 625
       $$
       $$
626
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
627 628
       $$
       $$
629
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
630
       $$
631
  For ceil_mode = true:
632
       $$
633
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
634 635
       $$
       $$
636
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
637 638
       $$
       $$
639
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
640
       $$
D
dengkaipeng 已提交
641

642
  For exclusive = false:
643
       $$
644
       dstart = i * strides[0] - pad_depth_front
645 646 647 648 649
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
650
       hstart = j * strides[1] - pad_height_top
651 652 653 654 655
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
656
       wstart = k * strides[2] -  pad_width_left
657 658 659 660 661 662 663
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
664

665
  For exclusive = true:
666
       $$
667
       dstart = max(0, i * strides[0] - pad_depth_front)
668 669 670 671 672
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
673 674 675
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
676 677 678
       hend = min(H, hstart + ksize[1])
       $$
       $$
679
       wstart = max(0, k * strides[2] - pad_width_left)
680 681 682 683 684 685 686
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
687

688
)DOC");
689
}
690 691 692 693 694
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
695 696 697 698
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
699 700 701 702
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad,
                  ops::Pool2dOpGradGradMaker<paddle::framework::OpDesc>,
                  ops::Pool2dOpGradGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(pool2d_grad_grad, ops::PoolOp);
703

Q
QI JUN 已提交
704 705 706 707 708
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
709
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
710 711 712 713
REGISTER_OP_CPU_KERNEL(
    pool2d_grad_grad,
    ops::PoolGradGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradGradKernel<paddle::platform::CPUDeviceContext, double>);
714

H
hong 已提交
715 716 717 718
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
719
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
720

Q
QI JUN 已提交
721 722 723 724 725 726
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);