test_hooks.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <set>
#include <string>
#include <vector>

#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/hooks.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace memory = paddle::memory;

DECLARE_bool(sort_sum_gradient);

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
std::shared_ptr<imperative::VariableWrapper> DoubleHook(
    const std::shared_ptr<imperative::VariableWrapper>& var) {
  // 1. create out var
  auto out_var = std::make_shared<imperative::VariableWrapper>(var->Name());
  out_var->SetType(var->Type());
  out_var->SetDataType(var->DataType());
  out_var->SetForwardDataType(var->ForwardDataType());
  out_var->InnerSetOverridedStopGradient(var->InnerOverridedStopGradient());

  // 2. get input and output var's tensor
  auto* out_tensor = out_var->MutableVar()->GetMutable<framework::LoDTensor>();
  auto& tensor = var->Var().Get<framework::LoDTensor>();
  out_tensor->Resize(tensor.dims());

  // 3. double calc
  auto* data = tensor.data<float>();
  auto* out_data = out_tensor->mutable_data<float>(platform::CPUPlace());
  for (int64_t i = 0; i < out_tensor->numel(); ++i) {
    out_data[i] = data[i] * 2.0;
  }

  return out_var;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
TEST(TestHooks, TestGradVarLeafBackwardHook) {
  // 1. prepare
  Tracer tracer;
  std::shared_ptr<VarBase> x(new VarBase(true, "x"));
  std::shared_ptr<VarBase> y(new VarBase(true, "y"));
  std::shared_ptr<VarBase> out(new VarBase(true, "out"));
  x->SetOverridedStopGradient(false);
  y->SetOverridedStopGradient(false);

  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> x_dims = {2, 5};
  std::vector<int64_t> y_dims = {5, 2};

  auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();

  x_tensor->Resize(framework::make_ddim(x_dims));
  auto* mutable_x = x_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_x, place, src_data.data(),
               sizeof(float) * src_data.size());

  y_tensor->Resize(framework::make_ddim(y_dims));
  auto* mutable_y = y_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_y, place, src_data.data(),
               sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, x));
  var_pair y_pair = var_pair("Y", vb_vector(1, y));
  var_pair out_pair = var_pair("Out", vb_vector(1, out));

  NameVarBaseMap ins = {x_pair, y_pair};
  NameVarBaseMap outs = {out_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;

100 101 102 103 104 105 106 107
  // add VariableWrapper hook
  x->GradVarBase()->AddVariableWrapperHook(
      std::make_shared<imperative::CppVariableWrapperHook>(DoubleHook));

  // add Void hook
  int64_t hook_value = 0;
  x->GradVarBase()->AddVoidHook(
      std::make_shared<std::function<void()>>([&]() { hook_value = 10; }));
108 109

  // 2. forward
J
Jiabin Yang 已提交
110
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
111 112 113 114 115 116

  ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);

  // 3. backward
117 118
  std::vector<std::shared_ptr<imperative::VarBase>> tensors{out};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
119
  BasicEngine engine;
120
  engine.Init(tensors, grad_tensors);
121 122
  engine.Execute();

123
  // verify VariableWrapper hook result
124 125 126 127 128 129
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);
  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 8.0);
  }
130 131
  // verify Void hook result
  ASSERT_EQ(hook_value, 10);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }
}

void GradVarLeafBackwardHookWithGradAccmulatedTest() {
  // 1. prepare
  Tracer tracer;
  std::shared_ptr<VarBase> x(new VarBase(true, "x"));
  std::shared_ptr<VarBase> y(new VarBase(true, "y"));
  std::shared_ptr<VarBase> z(new VarBase(true, "z"));
  std::shared_ptr<VarBase> out_xy(new VarBase(true, "out_xy"));
  std::shared_ptr<VarBase> out_xz(new VarBase(true, "out_xz"));
  std::shared_ptr<VarBase> out(new VarBase(true, "out"));
  x->SetOverridedStopGradient(false);
  y->SetOverridedStopGradient(false);
  z->SetOverridedStopGradient(false);

  platform::CPUPlace place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> x_dims = {2, 5};
  std::vector<int64_t> y_dims = {5, 2};
  std::vector<int64_t> z_dims = {5, 2};

  auto* x_tensor = x->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* y_tensor = y->MutableVar()->GetMutable<framework::LoDTensor>();
  auto* z_tensor = z->MutableVar()->GetMutable<framework::LoDTensor>();

  x_tensor->Resize(framework::make_ddim(x_dims));
  auto* mutable_x = x_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_x, place, src_data.data(),
               sizeof(float) * src_data.size());

  y_tensor->Resize(framework::make_ddim(y_dims));
  auto* mutable_y = y_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_y, place, src_data.data(),
               sizeof(float) * src_data.size());

  z_tensor->Resize(framework::make_ddim(z_dims));
  auto* mutable_z = z_tensor->mutable_data<float>(place);
  memory::Copy(place, mutable_z, place, src_data.data(),
               sizeof(float) * src_data.size());

180 181 182 183 184 185 186 187
  // add VariableWrapper hook
  x->GradVarBase()->AddVariableWrapperHook(
      std::make_shared<imperative::CppVariableWrapperHook>(DoubleHook));

  // add Void hook
  int64_t hook_value = 0;
  x->GradVarBase()->AddVoidHook(
      std::make_shared<std::function<void()>>([&]() { hook_value = 100; }));
188 189 190 191 192 193 194 195 196

  // 2. forward
  var_pair x_pair = var_pair("X", vb_vector(1, x));
  var_pair y_pair = var_pair("Y", vb_vector(1, y));
  var_pair out_xy_pair = var_pair("Out", vb_vector(1, out_xy));
  NameVarBaseMap ins = {x_pair, y_pair};
  NameVarBaseMap outs = {out_xy_pair};
  framework::AttributeMap mul_attr_map;
  mul_attr_map["use_mkldnn"] = false;
J
Jiabin Yang 已提交
197
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
198 199 200 201 202

  var_pair z_pair = var_pair("Y", vb_vector(1, z));
  var_pair out_xz_pair = var_pair("Out", vb_vector(1, out_xz));
  ins = {x_pair, z_pair};
  outs = {out_xz_pair};
J
Jiabin Yang 已提交
203
  tracer.TraceOp<VarBase>("mul", ins, outs, mul_attr_map, place, true);
204 205 206 207 208 209 210

  var_pair xy_pair = var_pair("X", vb_vector(1, out_xy));
  var_pair xz_pair = var_pair("Y", vb_vector(1, out_xz));
  var_pair out_pair = var_pair("Out", vb_vector(1, out));
  ins = {xy_pair, xz_pair};
  outs = {out_pair};
  framework::AttributeMap add_attr_map;
J
Jiabin Yang 已提交
211 212
  tracer.TraceOp<VarBase>("elementwise_add", ins, outs, add_attr_map, place,
                          true);
213 214 215 216 217 218 219

  ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(z->GradVarBase()->GradOpNum(), 0UL);
  ASSERT_EQ(out->GradVarBase()->GradOpNum(), 1UL);

  // 3. backward
220 221
  std::vector<std::shared_ptr<imperative::VarBase>> tensors{out};
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
222
  BasicEngine engine;
223
  engine.Init(tensors, grad_tensors);
224 225
  engine.Execute();

226
  // verify VariableWrapper hook result
227 228 229 230 231 232
  framework::LoDTensor x_grad;
  framework::TensorCopySync(x->GradVar().Get<framework::LoDTensor>(), place,
                            &x_grad);
  for (int i = 0; i < x_grad.numel(); ++i) {
    ASSERT_EQ(x_grad.data<float>()[i], 16.0);
  }
233 234
  // verify Void hook result
  ASSERT_EQ(hook_value, 100);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

  framework::LoDTensor y_grad;
  framework::TensorCopySync(y->GradVar().Get<framework::LoDTensor>(), place,
                            &y_grad);

  for (int i = 0; i < y_grad.numel(); ++i) {
    ASSERT_EQ(y_grad.data<float>()[i], 4.0);
  }

  framework::LoDTensor z_grad;
  framework::TensorCopySync(z->GradVar().Get<framework::LoDTensor>(), place,
                            &z_grad);

  for (int i = 0; i < z_grad.numel(); ++i) {
    ASSERT_EQ(z_grad.data<float>()[i], 4.0);
  }
}

TEST(TestHooks, TestGradVarLeafBackwardHookWithGradAccmulated) {
  GradVarLeafBackwardHookWithGradAccmulatedTest();
}

TEST(TestHooks, TestGradVarLeafBackwardHookWithSortedGradAccmulated) {
  FLAGS_sort_sum_gradient = true;
  GradVarLeafBackwardHookWithGradAccmulatedTest();
  FLAGS_sort_sum_gradient = false;
}

}  // namespace imperative
}  // namespace paddle

USE_OP(mul);
USE_OP(mul_grad);
268 269
USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(elementwise_add_grad);