coalesce_tensor_kernel.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/coalesce_tensor_kernel.h"

#include <sstream>
#include <vector>

#include "paddle/phi/backends/cpu/cpu_context.h"
21
#include "paddle/phi/backends/device_memory_aligment.h"
22 23 24
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
25 26 27 28
#ifdef PADDLE_WITH_XPU
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
#endif
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

namespace phi {

template <typename Context>
struct FillConstantVisitor {
  FillConstantVisitor(const Context &dev_ctx,
                      DenseTensor *tensor,
                      const float value)
      : dev_ctx_(dev_ctx), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply(typename std::enable_if<std::is_same<T, int8_t>::value ||
                                     std::is_same<T, int16_t>::value>::type * =
                 nullptr) const {
    PADDLE_THROW(
        errors::InvalidArgument("Not support data type for set_constant attr"));
  }

  template <typename T>
  void apply(typename std::enable_if<!(std::is_same<T, int8_t>::value ||
                                       std::is_same<T, int16_t>::value)>::type
                 * = nullptr) const {
    phi::funcs::SetConstant<Context, T> set_constant;
    set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
  }

  const Context &dev_ctx_;
  DenseTensor *tensor_;
  float value_;
};

void GetMemSizeAndDtype(const std::vector<const DenseTensor *> &lod_tensors,
                        size_t *numel,
                        const size_t &size_of_dtype,
                        const phi::Place &place,
                        const bool use_align = true,
                        const int align_size = -1) {
  *numel = 0;
  std::stringstream ss;
  ss << "alloc_space_for_vars: ";
  for (size_t i = 0; i < lod_tensors.size(); ++i) {
    auto size = lod_tensors[i]->numel();
    PADDLE_ENFORCE_GT(size,
                      0,
                      errors::InvalidArgument(
                          "The number of `%d`-th tensor's elements is 0.", i));
75 76 77 78 79 80
    auto len = use_align
                   ? phi::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                    place,
                                    align_size) /
                         size_of_dtype
                   : static_cast<size_t>(size);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    const void *ptr =
        lod_tensors[i]->IsInitialized() ? lod_tensors[i]->data() : nullptr;
    VLOG(4) << size << " " << len;
    ss << "input(" << i << "-th tensor) dim:(" << lod_tensors[i]->dims() << ") "
       << " addres:" << ptr << " len: " << len << ", ";
    *numel += len;
  }
  VLOG(10) << ss.str();
}

template <typename T, typename Context>
void CoalesceTensorKernel(const Context &dev_ctx,
                          const std::vector<const DenseTensor *> &input,
                          DataType dtype,
                          bool copy_data,
                          bool set_constant,
                          bool persist_output,
                          float constant,
                          bool use_align,
                          int align_size,
                          int size_of_dtype,
                          const std::vector<int64_t> &concated_shapes,
                          const std::vector<int64_t> &concated_ranks,
                          std::vector<DenseTensor *> output,
                          DenseTensor *fused_output) {
  PADDLE_ENFORCE_GT(
      input.size(),
      static_cast<size_t>(0),
      errors::InvalidArgument("The CoalesceTensor operator has no input."));
  PADDLE_ENFORCE_EQ(input.size(),
                    output.size(),
                    errors::InvalidArgument(
                        "The number of CoalesceTensor operator's input and "
                        "output is not match, "
                        "input number is %u, output number is %u.",
                        input.size(),
                        output.size()));

  // Input & Output check: only support LoDTensor
  bool has_not_init_in_vars = false;
  for (size_t i = 0; i < input.size(); ++i) {
    PADDLE_ENFORCE_NOT_NULL(
        input[i],
        errors::InvalidArgument("The %d-th input tensor cannot be nullptr.",
                                i));
    PADDLE_ENFORCE_NOT_NULL(
        output[i],
        errors::InvalidArgument("The %d-th output tensor cannot be nullptr.",
                                i));
    if (!input[i]->IsInitialized()) {
      has_not_init_in_vars = true;
    }
  }

  if (has_not_init_in_vars) {
    PADDLE_ENFORCE_EQ(
        concated_ranks.size(),
        output.size(),
        errors::InvalidArgument("The attribute(concated_ranks) length must be "
                                "equal to the output tensor number."));
    int64_t accumulated_ranks = 0;
    for (size_t i = 0; i < input.size(); ++i) {
      phi::DDim dims(concated_shapes.data() + accumulated_ranks,
                     concated_ranks[i]);
      if (!input[i]->IsInitialized()) {
        PADDLE_ENFORCE_EQ(
            input[i],
            output[i],
            errors::InvalidArgument(
                "The %d-th output tensor and %d-th input tensor when the "
                "%d-th input tensor is not initialized.",
                i,
                i,
                i));
        output[i]->Resize(dims);
      } else {
        PADDLE_ENFORCE_EQ(input[i]->dims(),
                          dims,
                          errors::InvalidArgument(
                              "The %d-th input tensor shape does not match the "
                              "attribute(concated_shapes) and "
                              "attribute(concated_ranks).",
                              i));
      }
      accumulated_ranks += concated_ranks[i];
      PADDLE_ENFORCE_LE(
          accumulated_ranks,
          concated_shapes.size(),
          errors::InvalidArgument("The attribute(concated_shapes) and "
                                  "attribute(concated_ranks) do not match."));
    }
    PADDLE_ENFORCE_EQ(
        accumulated_ranks,
        concated_shapes.size(),
        errors::InvalidArgument("The attribute(concated_shapes) and "
                                "attribute(concated_ranks) do not match."));
  }

  // Init the output as input
  for (size_t i = 0; i < input.size(); ++i) {
    output[i]->Resize(input[i]->dims());
  }

  // Get numel and dtype
  size_t numel = 0;

  if (size_of_dtype == -1) {
    size_of_dtype = paddle::experimental::SizeOf(dtype);
  }
  GetMemSizeAndDtype(
      input, &numel, size_of_dtype, dev_ctx.GetPlace(), use_align, align_size);

  // Alloc the continuous space
  void *fused_tensor_ptr = dev_ctx.Alloc(
      &fused_output->Resize(phi::make_ddim({static_cast<int64_t>(numel)})),
      dtype);
  VLOG(10) << "Fused tensor addr " << fused_tensor_ptr;

  // Init the continuous space
  size_t offset = 0;
  if (copy_data) {
    for (size_t i = 0; i < input.size(); ++i) {
      size_t len = static_cast<size_t>(input[i]->numel());
      auto sub_tensor = fused_output->Slice(static_cast<int64_t>(offset),
                                            static_cast<int64_t>(offset + len));
      phi::Copy(dev_ctx, *input[i], dev_ctx.GetPlace(), false, &sub_tensor);

      offset += use_align
209
                    ? phi::Alignment(
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                          len * size_of_dtype, dev_ctx.GetPlace(), align_size) /
                          size_of_dtype
                    : len;
    }
  } else if (set_constant) {
    phi::VisitDataType(
        dtype, FillConstantVisitor<Context>(dev_ctx, fused_output, constant));
  } else if (persist_output) {
    for (size_t i = 0; i < output.size(); ++i) {
      size_t len = static_cast<size_t>(output[i]->numel());
      auto sub_tensor = fused_output->Slice(static_cast<int64_t>(offset),
                                            static_cast<int64_t>(offset + len));
      // some var may not persistable, or persistable var may not init
      if (output[i]->IsInitialized()) {
        phi::Copy(dev_ctx, *output[i], dev_ctx.GetPlace(), false, &sub_tensor);
      }
      offset += use_align
227
                    ? phi::Alignment(
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                          len * size_of_dtype, dev_ctx.GetPlace(), align_size) /
                          size_of_dtype
                    : len;
    }
  }

  // Make the outputs point to the continuous space.
  offset = 0;
  std::stringstream ss;
  ss << "alloc_space_for_vars: ";

  for (size_t i = 0; i < output.size(); ++i) {
    size_t len = static_cast<size_t>(output[i]->numel());
    auto dim = output[i]->dims();
    VLOG(4) << len << " " << dim << " " << offset;
    output[i]
        ->ShareDataWith(fused_output->Slice(static_cast<int64_t>(offset),
                                            static_cast<int64_t>(offset + len)))
        .Resize(dim);
247
    len = use_align ? phi::Alignment(
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
                          len * size_of_dtype, dev_ctx.GetPlace(), align_size) /
                          size_of_dtype
                    : len;
    ss << "output(" << i << "-th tensor) dim:(" << dim << ")"
       << " address: " << output[i]->data() << " len: " << len << ", ";
    offset += len;
  }
  PADDLE_ENFORCE_EQ((int64_t)offset,
                    fused_output->numel(),
                    errors::InvalidArgument(
                        "The alloc_space_for_vars's offset: %s is unequal with "
                        "fused_output's numel: %s.",
                        offset,
                        fused_output->numel()));
  VLOG(10) << ss.str();
}

}  // namespace phi

PD_REGISTER_KERNEL(coalesce_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::CoalesceTensorKernel,
                   int,
                   float,
                   double) {}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(coalesce_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::CoalesceTensorKernel,
                   phi::dtype::float16,
                   int,
                   float,
                   double) {
  kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND);
}
#endif
287 288 289 290 291 292 293 294 295 296 297 298 299

#ifdef PADDLE_WITH_XPU
PD_REGISTER_KERNEL(coalesce_tensor,
                   XPU,
                   ALL_LAYOUT,
                   phi::CoalesceTensorKernel,
                   phi::dtype::float16,
                   int,
                   float,
                   double) {
  kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND);
}
#endif