test_cond.py 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import unittest
17 18 19 20

import numpy as np
from simple_nets import batchnorm_fc_with_inputs, simple_fc_net_with_inputs

21
import paddle
22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
25
import paddle.fluid.layers as layers
26
from paddle.fluid.backward import append_backward
27
from paddle.fluid.framework import Program, program_guard
28 29

np.random.seed(123)
30 31


32
class TestCondInputOutput(unittest.TestCase):
33 34 35 36 37 38 39 40 41 42
    def test_return_single_var(self):
        """
        pseudocode:

        if 0.23 < 0.1:
            return 2
        else:
            return -1
        """

43 44
        paddle.enable_static()

45 46 47 48 49 50 51 52 53 54 55
        def true_func():
            return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)

        def false_func():
            return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
L
LiYuRio 已提交
56
            pred = paddle.less_than(y, x)
57
            out = paddle.static.nn.cond(pred, true_func, false_func)
58 59
            # out is one tensor

60 61 62 63 64
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
65
        exe = fluid.Executor(place)
66 67 68 69
        (ret,) = exe.run(main_program, fetch_list=[out.name])
        np.testing.assert_allclose(
            np.asarray(ret), np.full((3, 2), -1, np.int32), rtol=1e-05
        )
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def test_return_0d_tensor(self):
        """
        pseudocode:

        if 0.23 >= 0.1:
            return 2
        else:
            return -1
        """

        paddle.enable_static()

        def true_func():
            return paddle.full(shape=[], dtype='int32', fill_value=2)

        def false_func():
            return paddle.full(shape=[], dtype='int32', fill_value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
            pred = paddle.greater_equal(y, x)
            out = paddle.static.nn.cond(pred, true_func, false_func)
            # out is one tensor

        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
        exe = fluid.Executor(place)
        (ret,) = exe.run(main_program, fetch_list=[out.name])
        np.testing.assert_allclose(np.asarray(ret), np.array(2), rtol=1e-05)
106
        self.assertEqual(ret.shape, ())
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    def test_0d_tensor_as_cond(self):
        """
        pseudocode:

        if 0.23 >= 0.1:
            return 2
        else:
            return -1
        """

        paddle.enable_static()

        def true_func():
            return paddle.full(shape=[3, 3], dtype='int32', fill_value=2)

        def false_func():
            return paddle.full(shape=[3, 3], dtype='int32', fill_value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = paddle.full(shape=[], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[], dtype='float32', fill_value=0.23)
            pred = paddle.greater_equal(y, x)
            out = paddle.static.nn.cond(pred, true_func, false_func)
133
            # out is a tensor
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
        exe = fluid.Executor(place)
        (ret,) = exe.run(main_program, fetch_list=[out.name])
        np.testing.assert_allclose(
            np.asarray(ret), np.full((3, 3), 2, np.int32), rtol=1e-05
        )

    def test_0d_tensor_backward(self):
        """
        pseudocode:

        a = -2.0
        if a >= 0:
            return a
        else:
            return -a
        """

        paddle.enable_static()

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = paddle.full(shape=[], dtype='float32', fill_value=-2.0)
            a.stop_gradient = False
            out = paddle.static.nn.cond(a >= 0, lambda: a, lambda: -a)
            append_backward(out)

        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
172

173 174 175 176 177
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out.name, a.grad_name])
        np.testing.assert_allclose(
            np.asarray(ret[0]), np.array(2.0), rtol=1e-05
        )
178
        self.assertEqual(ret[0].shape, ())
179 180 181
        np.testing.assert_allclose(
            np.asarray(ret[1]), np.array(-1.0), rtol=1e-05
        )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        self.assertEqual(ret[1].shape, ())

    def test_0d_tensor_dygraph(self):
        """
        pseudocode:

        a = -2.0
        if a >= 0:
            return a
        else:
            return -a
        """
        paddle.disable_static()
        a = paddle.full(shape=[], dtype='float32', fill_value=-2.0)
        a.stop_gradient = False
        out = paddle.static.nn.cond(a >= 0, lambda: a, lambda: -a)
        out.backward()

        np.testing.assert_allclose(np.asarray(out), np.array(2.0), rtol=1e-05)
        self.assertEqual(out.shape, [])

        np.testing.assert_allclose(
            np.asarray(a.grad), np.array(-1.0), rtol=1e-05
        )
        self.assertEqual(a.grad.shape, [])
207

208 209 210 211 212 213 214 215 216 217
    def test_return_var_tuple(self):
        """
        pseudocode:

        if True:
            return 1, True
        else:
            return 3, 2
        """

218 219
        paddle.enable_static()

220
        def true_func():
221 222 223
            return layers.fill_constant(
                shape=[1, 2], dtype='int32', value=1
            ), layers.fill_constant(shape=[2, 3], dtype='bool', value=True)
224 225

        def false_func():
226 227 228
            return layers.fill_constant(
                shape=[3, 4], dtype='float32', value=3
            ), layers.fill_constant(shape=[4, 5], dtype='int64', value=2)
229 230 231 232 233

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
234
            out = paddle.static.nn.cond(pred, true_func, false_func)
235 236
            # out is a tuple containing 2 tensors

237 238 239 240 241
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
242 243
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=out)
244 245 246 247 248 249
        np.testing.assert_allclose(
            np.asarray(ret[0]), np.full((1, 2), 1, np.int32), rtol=1e-05
        )
        np.testing.assert_allclose(
            np.asarray(ret[1]), np.full((2, 3), True, bool), rtol=1e-05
        )
250 251 252 253 254 255 256 257 258 259 260 261

    def test_pass_and_modify_var(self):
        """
        pseudocode:
        for i in range(5):
            a = 7
            if i % 2 == 0:
                a = a * (i + 1)
            else:
                a = a - (i - 1)
        """

262 263
        paddle.enable_static()

264 265 266 267 268 269 270 271 272 273 274 275 276
        def true_func(a, i):
            a = a * (i + 1)
            return a

        def false_func(a, i):
            a = a - (i - 1)
            return a

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
            i = fluid.data(name="i", shape=[1], dtype='int32')
277
            pred = (i % 2) == 0
278
            a = paddle.static.nn.cond(
279 280 281 282 283 284 285
                pred, lambda: true_func(a, i), lambda: false_func(a, i)
            )
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
286 287 288
        exe = fluid.Executor(place)
        for feed_i in range(5):
            expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
289 290 291 292 293 294 295 296 297 298
            (ret,) = exe.run(
                main_program,
                feed={'i': np.full((1), feed_i, np.int32)},
                fetch_list=[a],
            )
            np.testing.assert_allclose(
                np.asarray(ret),
                np.full((3, 2, 1), expected_a, np.int32),
                rtol=1e-05,
            )
299 300 301 302 303 304 305 306 307 308 309

    def test_return_none(self):
        """
        pseudocode: test doing nothing in branches
        for i in range(5):
            if i % 2 == 0:
                pass
            else:
                pass
        """

310 311
        paddle.enable_static()

312 313 314 315 316 317 318 319 320 321
        def true_func():
            pass

        def false_func():
            return None

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
322
            pred = (i % 2) == 0
323 324 325
            out1 = paddle.static.nn.cond(pred, true_func, false_func)
            out2 = paddle.static.nn.cond(pred, None, false_func)
            out3 = paddle.static.nn.cond(pred, true_func, None)
326 327 328 329 330
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
331 332 333 334 335 336 337 338 339 340 341 342 343
        exe = fluid.Executor(place)
        for feed_i in range(5):
            # Test that output is None is runnable
            exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
            self.assertIsNone(out1)
            self.assertIsNone(out2)
            self.assertIsNone(out3)

    def test_wrong_structure_exception(self):
        """
        test returning different number of tensors cannot merge into output
        """

344 345
        paddle.enable_static()

346 347 348 349 350 351 352
        def func_return_none():
            return None

        def func_return_one_tensor():
            return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)

        def func_return_two_tensors():
353 354 355
            return layers.fill_constant(
                shape=[3, 1], dtype='int32', value=7
            ), layers.fill_constant(shape=[3, 1], dtype='int32', value=8)
356 357 358 359 360

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
361
            pred = (i % 2) == 0
362
            with self.assertRaises(TypeError):
363
                out = paddle.static.nn.cond(pred, i, func_return_one_tensor)
364

365
            with self.assertRaises(TypeError):
366 367 368
                out = paddle.static.nn.cond(
                    pred, func_return_one_tensor, np.asarray([3])
                )
369 370

            with self.assertRaises(Exception) as e:
371
                out = paddle.static.nn.cond(
372 373
                    pred, func_return_none, func_return_one_tensor
                )
374
            self.assertTrue(
375 376 377
                "Incompatible return values of true_fn and false_fn in cond"
                in str(e.exception)
            )
378 379

            with self.assertRaises(Exception) as e:
380
                out = paddle.static.nn.cond(
381 382
                    pred, func_return_two_tensors, func_return_none
                )
383
            self.assertTrue(
384 385 386
                "Incompatible return values of true_fn and false_fn in cond"
                in str(e.exception)
            )
387 388

            with self.assertRaises(Exception) as e:
389
                out = paddle.static.nn.cond(
390 391
                    pred, func_return_one_tensor, func_return_two_tensors
                )
392
            self.assertTrue(
393
                "true fn returns 1 vars, but false fn returns 2 vars, which is not equals"
394 395
                in str(e.exception)
            )
396

397
    def test_extremely_simple_net_with_op_in_condition(self):
398
        paddle.enable_static()
399 400 401
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
402 403 404
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.23
            )
405
            a.stop_gradient = False
406 407 408
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.25
            )
409
            b.stop_gradient = False
410
            out = paddle.static.nn.cond(a - b < -1.0, lambda: a, lambda: b)
411 412
        append_backward(out)

413 414 415 416 417
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
418
        exe = fluid.Executor(place)
419 420 421
        ret = exe.run(
            main_program, fetch_list=[out, b, a.grad_name, b.grad_name]
        )
422 423
        # Note: fill_constant has loss of precision, you have to assertEqual
        # with values doens't lose precision in float-point number.
424 425 426
        self.assertEqual(ret[0][0], ret[1][0])
        self.assertEqual(ret[2][0], 0.0)
        self.assertEqual(ret[3][0], 1.0)
427

428

429 430 431 432 433 434 435 436
class TestCondNestedControlFlow(unittest.TestCase):
    def test_cond_inside_cond(self):
        """
        pseudocode:
        for i in range(1, 10):
            a = 2 * i
            if i < 5:
                if i >= 3:
437
                    return a + a
438 439 440 441 442 443 444 445 446
                else:
                    return a - a
            else:
                if i < 8:
                    return a * a
                else:
                    return a / a
        """

447 448
        paddle.enable_static()

449
        def less_than_branch(i, a):
450
            return paddle.static.nn.cond(
451
                i >= 3.0,
452 453
                lambda: paddle.add(a, a),
                lambda: paddle.subtract(a, a),
454
            )
455 456

        def greater_equal_branch(i, a):
457
            return paddle.static.nn.cond(
458
                i < 8.0,
459 460
                lambda: paddle.multiply(a, a),
                lambda: paddle.divide(a, a),
461
            )
462 463 464 465 466 467

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='float32')
            a = 2.0 * i
468
            out = paddle.static.nn.cond(
469 470 471 472
                i < 5.0,
                lambda: less_than_branch(i, a),
                lambda: greater_equal_branch(i, a),
            )
473
            mean = paddle.mean(out)
474 475
            append_backward(mean)

476 477 478 479 480
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
481 482 483 484 485 486 487 488 489
        exe = fluid.Executor(place)
        for feed_i in range(0, 10):
            expected_a = 2.0 * feed_i
            if feed_i < 5:
                expected_ret = expected_a + expected_a if feed_i >= 3 else 0.0
                expected_a_grad = 2.0 if feed_i >= 3 else 0.0
            else:
                expected_ret = expected_a * expected_a if feed_i < 8 else 1.0
                expected_a_grad = 2.0 * expected_a if feed_i < 8 else 0.0
490 491 492 493 494
            ret = exe.run(
                main_program,
                feed={'i': np.full((1), feed_i, np.float32)},
                fetch_list=[out.name, a.grad_name],
            )
495 496 497
            self.assertEqual(ret[0][0], expected_ret)
            self.assertEqual(ret[1][0], expected_a_grad)

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def test_cond_inside_cond_0d_tensor(self):
        """
        pseudocode:
            i = 3.0
            a = 2 * i
            if i < 5:
                if i >= 3:
                    return a + 1
                else:
                    return 1 - a
            else:
                if i < 8:
                    return a * 2
                else:
                    return a / 2
        """

        paddle.enable_static()

        def less_than_branch(i, a):
            return paddle.static.nn.cond(
                i >= 3.0,
                lambda: a + 1,
                lambda: 1 - a,
            )

        def greater_equal_branch(i, a):
            return paddle.static.nn.cond(
                i < 8.0,
                lambda: a * 2,
                lambda: a / 2,
            )

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = paddle.full(fill_value=3.0, shape=[], dtype='float32')
            i.stop_gradient = False
            a = 2.0 * i
            out = paddle.static.nn.cond(
                i < 5.0,
                lambda: less_than_branch(i, a),
                lambda: greater_equal_branch(i, a),
            )
            mean = paddle.mean(out)
            append_backward(out)

        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
        exe = fluid.Executor(place)
        ret = exe.run(
            main_program,
            fetch_list=[out.name, i.grad_name],
        )
        np.testing.assert_allclose(
            np.asarray(ret[0]), np.array(7.0), rtol=1e-05
        )
558
        self.assertEqual(ret[0].shape, ())
559 560 561
        np.testing.assert_allclose(
            np.asarray(ret[1]), np.array(2.0), rtol=1e-05
        )
562
        self.assertEqual(ret[1].shape, ())
563

564
    def test_cond_op_in_condition(self):
565
        paddle.enable_static()
566 567 568 569
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
570 571 572
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.23
            )
573
            a.stop_gradient = False
574 575 576
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.24
            )
577
            b.stop_gradient = False
578
            out = paddle.static.nn.cond(
579
                a < b,
580
                lambda: paddle.static.nn.cond(
581
                    a - b < -1.0,
582 583
                    lambda: paddle.add(a, b),
                    lambda: paddle.multiply(a, b),
584
                ),
585
                lambda: paddle.static.nn.cond(
586
                    a == b,
587
                    lambda: paddle.subtract(a, b),
588
                    lambda: paddle.pow(a, b),
589 590
                ),
            )
591 592
            append_backward(out)

593 594 595 596 597
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
598 599
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
600
        # Note: fill_constant has loss of precision, so we assertAlmostEqual.
601 602 603 604
        self.assertAlmostEqual(ret[0][0], 1.5252)
        self.assertAlmostEqual(ret[1][0], 1.24)
        self.assertAlmostEqual(ret[2][0], 1.23)

605

606
class TestCondBackward(unittest.TestCase):
607
    def backward_value_helper(self, cond_func, use_cuda, use_parallel_exe):
608 609 610
        """
        Helper function that compares calculated backward value is close to dy/dx
        """
611
        paddle.enable_static()
612 613 614 615 616 617 618 619 620 621 622
        main_program = Program()
        main_program.random_seed = 123
        startup_program = Program()
        startup_program.random_seed = 123
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 9], dtype='float32')
            img.stop_gradient = False
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            append_backward(loss)
623
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
624 625 626
        exe = fluid.Executor(place)
        exe.run(startup_program)

627 628 629
        num_devices = 1
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
630 631 632 633 634
            exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                main_program=main_program,
                loss_name=loss.name,
            )
635 636
            num_devices = exe.device_count

637 638 639
        delta = 0.005
        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[1, 9]).astype(np.float32)
640 641 642
            feed_label = np.random.randint(
                low=0, high=10, size=[1, 1], dtype=np.int64
            )
643 644 645 646
            if use_parallel_exe:
                img_grad, loss_value = exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
647
                        'image': np.repeat(feed_img, num_devices, axis=0),
648
                        'label': np.repeat(feed_label, num_devices, axis=0),
649
                    },
650 651
                    fetch_list=[img.grad_name, loss.name],
                )
652 653 654 655 656 657
            else:
                img_grad, loss_value = exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
658
                        'label': feed_label,
659
                    },
660 661
                    fetch_list=[img.grad_name, loss.name],
                )
662

663
            numerical_grad = np.zeros(shape=[num_devices, 9], dtype=np.float32)
664 665 666
            feed_img_delta = np.copy(feed_img)
            for j in range(9):
                feed_img_delta[0][j] = feed_img[0][j] + delta
667
                if use_parallel_exe:
668 669 670 671 672 673 674 675 676 677 678 679 680
                    loss_delta = exe.run(
                        feed={
                            'i': np.full((num_devices), feed_i, np.int32),
                            'image': np.repeat(
                                feed_img_delta, num_devices, axis=0
                            ),
                            'label': np.repeat(feed_label, num_devices, axis=0),
                        },
                        fetch_list=[loss.name],
                    )
                    multi_device_grad = (
                        (loss_delta[0] - loss_value[0]) / delta / num_devices
                    )
681 682 683
                    for d in range(num_devices):
                        numerical_grad[d][j] = multi_device_grad[d]
                else:
684 685 686 687 688 689 690 691 692 693 694 695
                    loss_delta = exe.run(
                        main_program,
                        feed={
                            'i': np.full((1), feed_i, np.int32),
                            'image': feed_img_delta,
                            'label': feed_label,
                        },
                        fetch_list=[loss.name],
                    )
                    numerical_grad[0][j] = (
                        loss_delta[0] - loss_value[0]
                    ) / delta
696
                feed_img_delta[0][j] = feed_img[0][j]
697 698 699
            np.testing.assert_allclose(
                img_grad, numerical_grad, rtol=0.05, atol=0.05
            )
700

701
    def add_optimizer_helper(self, cond_func, use_cuda, use_parallel_exe):
702 703 704 705 706 707 708 709 710 711 712 713 714
        """
        Test that program is runnable when add optimizer
        """
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 784], dtype='float32')
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)

715
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
716 717
        exe = fluid.Executor(place)
        exe.run(startup_program)
718 719
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
720 721 722 723 724
            exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                main_program=main_program,
                loss_name=loss.name,
            )
725
            num_devices = exe.device_count
726 727 728

        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[16, 784]).astype(np.float32)
729 730 731
            feed_label = np.random.randint(
                low=0, high=10, size=[16, 1], dtype=np.int64
            )
732
            if use_parallel_exe:
733 734 735 736 737 738 739 740
                exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
                        'image': np.repeat(feed_img, num_devices, axis=0),
                        'label': np.repeat(feed_label, num_devices, axis=0),
                    },
                    fetch_list=[loss.name],
                )
741
            else:
742 743 744 745 746 747 748 749 750
                exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
                        'label': feed_label,
                    },
                    fetch_list=[loss],
                )
751 752

    def test_cond_backward(self):
753

754 755
        paddle.enable_static()

756
        def cond_func(i, img, label):
757
            predicate = (i % 2) == 0
758
            return paddle.static.nn.cond(
759 760
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
761 762
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10),
            )
763

764
        for use_parallel_exe in [False, True]:
765 766 767 768 769 770
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

771 772 773 774 775 776
            self.backward_value_helper(
                cond_func, core.is_compiled_with_cuda(), use_parallel_exe
            )
            self.add_optimizer_helper(
                cond_func, core.is_compiled_with_cuda(), use_parallel_exe
            )
777 778

    def test_half_nested_cond_backward(self):
779
        paddle.enable_static()
780

781
        def branch(i, img, label):
782
            return paddle.static.nn.cond(
783 784
                (i % 2) == 0,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
785 786
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10),
            )
787 788

        def cond_func_simple_net_at_true(i, img, label):
789
            return paddle.static.nn.cond(
790 791
                i < 5, lambda: branch(i, img, label), lambda: paddle.mean(img)
            )
792 793

        def cond_func_simple_net_at_false(i, img, label):
794
            return paddle.static.nn.cond(
795 796
                i < 5, lambda: paddle.mean(img), lambda: branch(i, img, label)
            )
797

798
        for use_parallel_exe in [False, True]:
799 800 801 802 803 804
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            self.backward_value_helper(
                cond_func_simple_net_at_true,
                core.is_compiled_with_cuda(),
                use_parallel_exe,
            )
            self.add_optimizer_helper(
                cond_func_simple_net_at_true,
                core.is_compiled_with_cuda(),
                use_parallel_exe,
            )
            self.backward_value_helper(
                cond_func_simple_net_at_false,
                core.is_compiled_with_cuda(),
                use_parallel_exe,
            )
            self.add_optimizer_helper(
                cond_func_simple_net_at_false,
                core.is_compiled_with_cuda(),
                use_parallel_exe,
            )
825 826

    def test_nested_cond_backward(self):
827
        paddle.enable_static()
828

829 830
        def branch(i, img, label, mod_two):
            if mod_two:
831
                predicate = (i % 2) == 0
832
            else:
833
                predicate = (i % 2) != 0
834
            return paddle.static.nn.cond(
835 836
                predicate,
                lambda: simple_fc_net_with_inputs(img, label, class_num=10),
837 838
                lambda: batchnorm_fc_with_inputs(img, label, class_num=10),
            )
839 840

        def cond_func(i, img, label):
841
            return paddle.static.nn.cond(
842 843 844 845
                i < 5,
                lambda: branch(i, img, label, True),
                lambda: branch(i, img, label, False),
            )
846

847
        for use_parallel_exe in [False, True]:
848 849 850 851 852
            if use_parallel_exe and os.name == "nt":
                print(
                    "Skip use_parallel_exe=True in Windows because of flaky test when using PE under old Windows machine"
                )
                continue
853 854 855 856 857 858
            self.backward_value_helper(
                cond_func, core.is_compiled_with_cuda(), use_parallel_exe
            )
            self.add_optimizer_helper(
                cond_func, core.is_compiled_with_cuda(), use_parallel_exe
            )
859 860


861 862
class TestCondWithError(unittest.TestCase):
    def test_input_type_error(self):
863
        paddle.enable_static()
864 865 866 867 868 869 870 871 872
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):
            pred = fluid.data(name='y', shape=[1], dtype='bool')

            def func():
                return pred

            with self.assertRaises(TypeError):
873
                paddle.static.nn.cond(None, func, func)
874 875

            with self.assertRaises(TypeError):
876
                paddle.static.nn.cond(pred, func, set())
877 878

            with self.assertRaises(TypeError):
879
                paddle.static.nn.cond(pred, set(), func)
880 881

            with self.assertRaises(TypeError):
882
                paddle.static.nn.cond(pred, func, func, set())
883 884


885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
class TestCondWithDict(unittest.TestCase):
    def test_input_with_dict(self):
        paddle.enable_static()
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):

            def true_func():
                return {
                    '1': paddle.full(shape=[3, 2], dtype='int32', fill_value=1),
                    '2': paddle.full(
                        shape=[2, 3], dtype='bool', fill_value=True
                    ),
                }

            def false_func():
                return {
                    '1': paddle.full(
                        shape=[3, 4], dtype='float32', fill_value=3
                    ),
                    '2': paddle.full(shape=[4, 5], dtype='int64', fill_value=2),
                }

            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
            pred = paddle.less_than(x=x, y=y, name=None)
            ret = paddle.static.nn.cond(pred, true_func, false_func)
            self.assertEqual(
                ret['1'].shape,
                (3, -1),
                f"The shape is not correct, expects (3, -1) but gets {ret['1'].shape}.",
            )
            self.assertEqual(
                ret['2'].shape,
                (-1, -1),
                f"The shape is not correct, expects (-1, -1) but gets {ret['2'].shape}.",
            )


924 925
if __name__ == '__main__':
    unittest.main()