container.py 11.0 KB
Newer Older
Y
Youwei Song 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import OrderedDict
S
songyouwei 已提交
16
from ..framework import Parameter
Y
Youwei Song 已提交
17 18
from .layers import Layer

S
songyouwei 已提交
19 20 21
__all__ = [
    'Sequential',
    'ParameterList',
22
    'LayerList',
S
songyouwei 已提交
23
]
Y
Youwei Song 已提交
24 25 26 27 28 29 30 31


class Sequential(Layer):
    """Sequential container.
    Sub layers will be added to this container in the order of argument in the constructor.
    The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.

    Parameters:
S
songyouwei 已提交
32
        *layers(tuple): Layers or iterable name Layer pairs.
Y
Youwei Song 已提交
33 34 35 36

    Examples:
        .. code-block:: python

37
            import paddle
Y
Youwei Song 已提交
38 39 40
            import numpy as np

            data = np.random.uniform(-1, 1, [30, 10]).astype('float32')
41 42 43 44 45 46 47
            data = paddle.to_tensor(data)
            # create Sequential with iterable Layers
            model1 = paddle.nn.Sequential(
                paddle.nn.Linear(10, 1), paddle.nn.Linear(1, 2)
            )
            model1[0]  # access the first layer
            res1 = model1(data)  # sequential execution
Y
Youwei Song 已提交
48

49 50 51 52 53 54 55 56
            # create Sequential with name Layer pairs
            model2 = paddle.nn.Sequential(
                ('l1', paddle.nn.Linear(10, 2)),
                ('l2', paddle.nn.Linear(2, 3))
            )
            model2['l1']  # access l1 layer
            model2.add_sublayer('l3', paddle.nn.Linear(3, 3))  # add sublayer
            res2 = model2(data)  # sequential execution
Y
Youwei Song 已提交
57 58 59

    """

S
songyouwei 已提交
60 61
    def __init__(self, *layers):
        super(Sequential, self).__init__()
Y
Youwei Song 已提交
62 63 64 65 66 67 68 69
        if len(layers) > 0 and isinstance(layers[0], tuple):
            for name, layer in layers:
                self.add_sublayer(name, layer)
        else:
            for idx, layer in enumerate(layers):
                self.add_sublayer(str(idx), layer)

    def __getitem__(self, name):
70 71 72 73 74 75 76 77 78 79
        if isinstance(name, slice):
            return self.__class__(*(list(self._sub_layers.values())[name]))
        else:
            if name >= len(self._sub_layers):
                raise IndexError('index {} is out of range'.format(name))
            elif name < 0 and name >= -len(self._sub_layers):
                name += len(self._sub_layers)
            elif name < -len(self._sub_layers):
                raise IndexError('index {} is out of range'.format(name))
            return self._sub_layers[str(name)]
Y
Youwei Song 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    def __setitem__(self, name, layer):
        assert isinstance(layer, Layer)
        setattr(self, str(name), layer)

    def __delitem__(self, name):
        name = str(name)
        assert name in self._sub_layers
        del self._sub_layers[name]

    def __len__(self):
        return len(self._sub_layers)

    def forward(self, input):
        for layer in self._sub_layers.values():
            input = layer(input)
        return input
S
songyouwei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109


class ParameterList(Layer):
    """ParameterList Container.

    This container acts like a Python list, but parameters it contains will be properly added.

    Parameters:
        parameters (iterable, optional): Iterable Parameters to be added

    Examples:
        .. code-block:: python

110
            import paddle
S
songyouwei 已提交
111 112
            import numpy as np

113
            class MyLayer(paddle.nn.Layer):
S
songyouwei 已提交
114 115 116
                def __init__(self, num_stacked_param):
                    super(MyLayer, self).__init__()
                    # create ParameterList with iterable Parameters
117 118
                    self.params = paddle.nn.ParameterList(
                        [paddle.create_parameter(
S
songyouwei 已提交
119 120 121 122 123 124 125 126 127 128 129
                            shape=[2, 2], dtype='float32')] * num_stacked_param)

                def forward(self, x):
                    for i, p in enumerate(self.params):
                        tmp = self._helper.create_variable_for_type_inference('float32')
                        self._helper.append_op(
                            type="mul",
                            inputs={"X": x,
                                    "Y": p},
                            outputs={"Out": tmp},
                            attrs={"x_num_col_dims": 1,
130
                                    "y_num_col_dims": 1})
S
songyouwei 已提交
131 132 133 134
                        x = tmp
                    return x

            data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            x = paddle.to_tensor(data_np)
            num_stacked_param = 4
            model = MyLayer(num_stacked_param)
            print(len(model.params))  # 4
            res = model(x)
            print(res.shape)  # [5, 2]

            replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32')
            model.params[num_stacked_param - 1] = replaced_param  # replace last param
            res = model(x)
            print(res.shape)  # [5, 3]
            model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32'))  # append param
            print(len(model.params))  # 5
            res = model(x)
            print(res.shape)  # [5, 4]
S
songyouwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    """

    def __init__(self, parameters=None):
        super(ParameterList, self).__init__()
        if parameters is not None:
            for idx, param in enumerate(parameters):
                assert isinstance(param, Parameter)
                self.add_parameter(str(idx), param)

    def __getitem__(self, idx):
        return self._parameters[str(idx)]

    def __setitem__(self, idx, param):
        assert isinstance(param, Parameter)
        setattr(self, str(idx), param)

    def __len__(self):
        return len(self._parameters)

    def __iter__(self):
        return iter(self._parameters.values())

    def append(self, parameter):
        """Appends a given parameter at the end of the list.

        Parameters:
            parameter (Parameter): parameter to append
        """
        idx = len(self._parameters)
        self.add_parameter(str(idx), parameter)
        return self
181 182 183 184 185 186 187 188 189 190 191 192


class LayerList(Layer):
    """
    LayerList holds sublayers, and sublayers it contains are properly registered.
    Holded sublayers can be indexed like a regular python list.

    Parameters:
        sublayers (iterable of Layer, optional): sublayers to hold

    Examples:
        .. code-block:: python
193 194

            import paddle
195 196
            import numpy as np

197
            class MyLayer(paddle.nn.Layer):
198 199
                def __init__(self):
                    super(MyLayer, self).__init__()
200 201
                    self.linears = paddle.nn.LayerList(
                        [paddle.nn.Linear(10, 10) for i in range(10)])
202 203 204 205 206 207 208 209 210 211

                def forward(self, x):
                    # LayerList can act as an iterable, or be indexed using ints
                    for i, l in enumerate(self.linears):
                        x = self.linears[i // 2](x) + l(x)
                    return x
    """

    def __init__(self, sublayers=None):
        super(LayerList, self).__init__()
212 213 214
        if sublayers is not None:
            for idx, layer in enumerate(sublayers):
                self.add_sublayer(str(idx), layer)
215

216 217 218 219 220 221 222 223 224 225
    def _get_abs_idx(self, idx):
        if isinstance(idx, int):
            if not (-len(self) <= idx < len(self)):
                raise IndexError(
                    'index {} is out of range, should be an integer in range [{}, {})'.
                    format(idx, -len(self), len(self)))
            if idx < 0:
                idx += len(self)
        return idx

226 227 228 229
    def __getitem__(self, idx):
        if isinstance(idx, slice):
            return self.__class__(list(self._sub_layers.values())[idx])
        else:
230
            idx = self._get_abs_idx(idx)
231 232 233
            return self._sub_layers[str(idx)]

    def __setitem__(self, idx, sublayer):
234
        idx = self._get_abs_idx(idx)
235 236 237 238 239 240 241
        return setattr(self, str(idx), sublayer)

    def __delitem__(self, idx):
        if isinstance(idx, slice):
            for k in range(len(self._sub_layers))[idx]:
                delattr(self, str(k))
        else:
242
            idx = self._get_abs_idx(idx)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            delattr(self, str(idx))
        str_indices = [str(i) for i in range(len(self._sub_layers))]
        self._sub_layers = OrderedDict(
            list(zip(str_indices, self._sub_layers.values())))

    def __len__(self):
        return len(self._sub_layers)

    def __iter__(self):
        return iter(self._sub_layers.values())

    def append(self, sublayer):
        """
        Appends a sublayer to the end of the list.

        Parameters:
            sublayer (Layer): sublayer to append
260 261 262 263

        Examples:
            .. code-block:: python

264 265 266 267 268 269
                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another = paddle.nn.Linear(10, 10)
                linears.append(another)
                print(len(linears))  # 11
270 271 272
        """
        self.add_sublayer(str(len(self)), sublayer)
        return self
273 274 275 276 277 278 279 280 281 282 283 284

    def insert(self, index, sublayer):
        """
        Insert a sublayer before a given index in the list.

        Parameters:
            index (int): index to insert.
            sublayer (Layer): sublayer to insert

        Examples:
            .. code-block:: python

285 286 287 288 289 290
                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another = paddle.nn.Linear(10, 10)
                linears.insert(3, another)
                print(linears[3] is another)  # True
291 292 293
                another = paddle.nn.Linear(10, 10)
                linears.insert(-1, another)
                print(linears[-2] is another) # True
294 295
        """
        assert isinstance(index, int) and \
296 297 298 299
               -len(self._sub_layers) <= index < len(self._sub_layers), \
            "index should be an integer in range [{}, {})".format(-len(self), len(self))

        index = self._get_abs_idx(index)
300 301 302 303 304 305 306 307 308 309 310 311 312
        for i in range(len(self._sub_layers), index, -1):
            self._sub_layers[str(i)] = self._sub_layers[str(i - 1)]
        self._sub_layers[str(index)] = sublayer

    def extend(self, sublayers):
        """
        Appends sublayers to the end of the list.

        Parameters:
            sublayers (iterable of Layer): iterable of sublayers to append

        Examples:
            .. code-block:: python
313 314 315 316 317 318 319 320

                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another_list = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(5)])
                linears.extend(another_list)
                print(len(linears))  # 15
                print(another_list[0] is linears[10])  # True
321 322 323 324 325 326
        """
        offset = len(self)
        for i, sublayer in enumerate(sublayers):
            idx = str(offset + i)
            self.add_sublayer(idx, sublayer)
        return self