accuracy_op_npu.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/controlflow/compare_op.h"
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class AccuracyNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
26
    auto* inference = ctx.Input<Tensor>("Out");
27
    auto* label = ctx.Input<Tensor>("Label");
28
    auto* indices = ctx.Input<Tensor>("Indices");
29

30
    auto* accuracy = ctx.Output<Tensor>("Accuracy");
31 32 33 34 35 36
    auto* correct = ctx.Output<Tensor>("Correct");
    auto* total = ctx.Output<Tensor>("Total");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

37 38 39 40
    int num_samples = inference->dims()[0];
    if (num_samples == 0) {
      return;
    }
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    // cast `indices` or `label` if their type is not consistent
    Tensor cast_indices(framework::proto::VarType::INT32);
    Tensor cast_label(framework::proto::VarType::INT32);
    if (indices->type() != label->type()) {
      auto dst_dtype = ConvertToNpuDtype(framework::proto::VarType::INT32);
      if (indices->type() != framework::proto::VarType::INT32) {
        cast_indices.Resize(indices->dims());
        cast_indices.mutable_data<int>(ctx.GetPlace());
        auto runner_cast_indices =
            NpuOpRunner("Cast", {*indices}, {cast_indices},
                        {{"dst_type", static_cast<int>(dst_dtype)}});
        runner_cast_indices.Run(stream);
      } else {
        cast_indices.ShareDataWith(*indices);
      }
      if (label->type() != framework::proto::VarType::INT32) {
        cast_label.Resize(label->dims());
        cast_label.mutable_data<int>(ctx.GetPlace());
        auto runner_cast_label =
            NpuOpRunner("Cast", {*label}, {cast_label},
                        {{"dst_type", static_cast<int>(dst_dtype)}});
        runner_cast_label.Run(stream);
      } else {
        cast_label.ShareDataWith(*label);
      }
    } else {
      cast_indices.ShareDataWith(*indices);
      cast_label.ShareDataWith(*label);
    }

72
    // equal
73 74
    Tensor tmp_equal(framework::proto::VarType::BOOL);
    tmp_equal.Resize(inference->dims());
75 76
    tmp_equal.mutable_data<bool>(ctx.GetPlace());
    auto runner_equal =
77
        NpuOpRunner("Equal", {cast_indices, cast_label}, {tmp_equal}, {});
78 79 80
    runner_equal.Run(stream);

    // cast equal
81 82
    Tensor tmp_equal_cast(framework::proto::VarType::FP32);
    tmp_equal_cast.Resize(inference->dims());
83
    tmp_equal_cast.mutable_data<float>(ctx.GetPlace());
84 85 86 87
    auto runner_cast_equal = NpuOpRunner(
        "Cast", {tmp_equal}, {tmp_equal_cast},
        {{"dst_type",
          static_cast<int>(ConvertToNpuDtype(tmp_equal_cast.type()))}});
88 89
    runner_cast_equal.Run(stream);

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    // [correct]
    // reduce_max
    Tensor tmp_correct_max(framework::proto::VarType::FP32);
    tmp_correct_max.Resize(framework::make_ddim({num_samples}));
    tmp_correct_max.mutable_data<float>(ctx.GetPlace());
    auto runner_reduce_max =
        NpuOpRunner("ReduceMaxD", {tmp_equal_cast}, {tmp_correct_max},
                    {{"axes", std::vector<int>{1}}, {"keep_dims", false}});
    runner_reduce_max.Run(stream);

    // reduce_sum
    Tensor tmp_correct(framework::proto::VarType::FP32);
    tmp_correct.Resize(correct->dims());
    tmp_correct.mutable_data<float>(ctx.GetPlace());
    auto runner_reduce_sum =
        NpuOpRunner("ReduceSumD", {tmp_correct_max}, {tmp_correct},
                    {{"axes", std::vector<int>{0}}, {"keep_dims", false}});
    runner_reduce_sum.Run(stream);

    // cast to int
    correct->mutable_data<int>(ctx.GetPlace());
    auto runner_cast_correct = NpuOpRunner(
        "Cast", {tmp_correct}, {*correct},
        {{"dst_type", static_cast<int>(ConvertToNpuDtype(correct->type()))}});
    runner_cast_correct.Run(stream);

    // [total]
    total->mutable_data<int>(ctx.GetPlace());
    FillNpuTensorWithConstant<int>(total, static_cast<int>(num_samples));

    // use `total` of type `float32` for calculating accuracy
    Tensor tmp_total(framework::proto::VarType::FP32);
    tmp_total.Resize(total->dims());
    tmp_total.mutable_data<float>(ctx.GetPlace());
    FillNpuTensorWithConstant<float>(&tmp_total,
                                     static_cast<float>(num_samples));

    // [accuracy]
    accuracy->mutable_data<float>(ctx.GetPlace());
    auto runner_accuracy =
        NpuOpRunner("Div", {tmp_correct, tmp_total}, {*accuracy}, {});
    runner_accuracy.Run(stream);
132 133 134 135 136 137 138 139 140 141 142 143 144 145
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    accuracy, ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>,
    ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, int>,
    ops::AccuracyNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);