diag_kernel.cu 5.2 KB
Newer Older
L
Linjie Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/diag_kernel.h"

#include <algorithm>
#include <tuple>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

// Extract the diagonal of a matrix 'x' to a vector 'out'.
template <typename T>
__global__ void ExtractDiagonalKernel(T* out,
                                      const T* x,
                                      std::ptrdiff_t start,
                                      std::ptrdiff_t size,
                                      const std::ptrdiff_t sumStride,
                                      const std::ptrdiff_t outStride) {
  for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
       idx += gridDim.x * blockDim.x) {
    const std::ptrdiff_t xOffset = start + sumStride * idx;
    out[outStride * idx] = x[xOffset];
  }
}

// Paste a vector 'x' to the diagonal of a matrix 'out'
template <typename T>
__global__ void PasteDiagonalKernel(T* out,
                                    const T* x,
                                    std::ptrdiff_t start,
                                    std::ptrdiff_t x_length,
                                    const std::ptrdiff_t sumStride,
                                    const std::ptrdiff_t xStride) {
  for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x;
       idx < x_length;
       idx += gridDim.x * blockDim.x) {
    const std::ptrdiff_t outOffset = start + sumStride * idx;
    out[outOffset] = x[xStride * idx];
  }
}

template <typename T, typename Context>
void DiagKernel(const Context& dev_ctx,
                const DenseTensor& x,
                int offset,
                float padding_value,
                DenseTensor* out) {
  auto* x_data = x.data<T>();
  auto x_dims = x.dims();
  T* out_data = dev_ctx.template Alloc<T>(out);
  auto out_dims = out->dims();

  auto GetBlockGridSize = [&dev_ctx](int64_t size) {
    const int64_t block_size =
        std::min(size, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock()));
    int64_t max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int64_t max_blocks =
        std::max(((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
    const int64_t grid_size =
        std::min(max_blocks, (size + block_size - 1) / block_size);
    return std::tuple<int64_t, int64_t>{block_size, grid_size};
  };

  if (x_dims.size() == 1) {
    phi::funcs::SetConstant<Context, T> set_padding_value;
    set_padding_value(dev_ctx, out, static_cast<T>(padding_value));

    auto x_length = x_dims[0];
    auto size = (offset > 0) ? x_length + offset : x_length - offset;
    const int& x_stride = phi::funcs::ComputeStride(0, x_dims);
    if (size > 0) {
      const auto& out_stride_0 = phi::funcs::ComputeStride(0, out_dims);
      const auto& out_stride_1 = phi::funcs::ComputeStride(1, out_dims);
      auto start =
          (offset >= 0 ? offset * out_stride_1 : -offset * out_stride_0);

      std::tuple<int64_t, int64_t> block_grid_size = GetBlockGridSize(size);

      PasteDiagonalKernel<T><<<std::get<1>(block_grid_size),
                               std::get<0>(block_grid_size),
                               0,
                               dev_ctx.stream()>>>(out_data,
                                                   x_data,
                                                   start,
                                                   x_length,
                                                   out_stride_0 + out_stride_1,
                                                   x_stride);
    }
  } else {
    const int& x_stride_0 = phi::funcs::ComputeStride(0, x_dims);
    const int& x_stride_1 = phi::funcs::ComputeStride(1, x_dims);

    int64_t size;
    if (offset > 0) {
      size = std::min(x_dims[0], x_dims[1] - offset);
    } else {
      size = std::min(x_dims[0] + offset, x_dims[1]);
    }

    if (size > 0) {
      auto start = (offset >= 0 ? offset * x_stride_1 : -offset * x_stride_0);
      const auto& out_stride_0 = phi::funcs::ComputeStride(0, out_dims);

      std::tuple<int64_t, int64_t> block_grid_size = GetBlockGridSize(size);

      ExtractDiagonalKernel<T><<<std::get<1>(block_grid_size),
                                 std::get<0>(block_grid_size),
                                 0,
                                 dev_ctx.stream()>>>(
          out_data, x_data, start, size, x_stride_0 + x_stride_1, out_stride_0);
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    diag, GPU, ALL_LAYOUT, phi::DiagKernel, int, int64_t, float, double) {}