gaussian_random_op.cc 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
D
dongzhihong 已提交
17

18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
22 23
namespace paddle {
namespace operators {
D
dongzhihong 已提交
24

Q
qijun 已提交
25
template <typename T>
Y
Yu Yang 已提交
26
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
27 28
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
29 30
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
31 32 33
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
34
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
35 36 37 38 39 40
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
41
    int64_t size = tensor->numel();
Q
qijun 已提交
42
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
43 44 45 46 47
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
48
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
49 50
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
51

52
  void InferShape(framework::InferShapeContext* ctx) const override {
53 54
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
55
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
56
    std::vector<int64_t> temp;
57 58
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
59 60
      temp.push_back(static_cast<int64_t>(dim));
    }
61 62 63 64 65 66
    PADDLE_ENFORCE_GT(
        shape.size(), 0UL,
        platform::errors::InvalidArgument(
            "Attribute(shape) of GaussianRandomOp must be set "
            "and shape.size() > 0, but reveived shape.size() is %d",
            shape.size()));
Q
Qiao Longfei 已提交
67
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
68
  }
Y
Yu Yang 已提交
69

70
 protected:
71
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
72
      const framework::ExecutionContext& ctx) const override {
73 74 75 76 77 78 79 80 81 82 83
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
84
    return framework::OpKernelType(
85
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
86
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
87
  }
D
dongzhihong 已提交
88 89
};

D
dongzhihong 已提交
90
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
91
 public:
Y
Yu Yang 已提交
92
  void Make() override {
K
kexinzhao 已提交
93
    AddOutput("Out", "Output matrix of gaussian random op");
94

T
tangwei12 已提交
95 96 97
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
                                  "The dimension of random tensor.");
K
kexinzhao 已提交
98 99 100 101 102 103 104 105
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
106
    AddAttr<int>("seed",
K
kexinzhao 已提交
107
                 "(int, default 0) "
Q
qijun 已提交
108
                 "Random seed of generator."
109 110 111
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
112
        .SetDefault(0);
F
fengjiayi 已提交
113
    AddAttr<int>("dtype",
K
kexinzhao 已提交
114 115
                 "(int, default 5(FP32)) "
                 "Output data type.")
116
        .SetDefault(framework::proto::VarType::FP32);
117 118 119
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
120 121 122 123 124 125
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
126 127 128 129 130 131
  }
};

}  // namespace operators
}  // namespace paddle

132
namespace ops = paddle::operators;
F
fengjiayi 已提交
133 134
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
135 136 137 138 139
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
                       ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);