extension.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the extention functions
16

17
__all__ = [
18 19
    'diag_embed',
    'row_conv'
20 21
]

L
Li Fuchen 已提交
22 23
import numpy as np
from ...fluid.data_feeder import check_dtype
24
from ...fluid.layer_helper import LayerHelper
L
Li Fuchen 已提交
25 26 27
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layers.tensor import assign
from ...fluid import core, dygraph_utils
28 29 30
from ...fluid.layers.layer_function_generator import templatedoc


L
Li Fuchen 已提交
31 32
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
33 34
	:alias_main: paddle.nn.functional.diag_embed
	:alias: paddle.nn.functional.diag_embed,paddle.nn.functional.extension.diag_embed
S
swtkiwi 已提交
35

L
Li Fuchen 已提交
36 37 38
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) 
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions 
    of the returned tensor will be selected.
39

L
Li Fuchen 已提交
40
    The argument ``offset`` determines which diagonal is generated:
41

L
Li Fuchen 已提交
42 43 44
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
45

L
Li Fuchen 已提交
46 47 48 49 50
    Args:
        input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
51
    
L
Li Fuchen 已提交
52 53
    Returns:
        Variable, the output data type is the same as input data type.
54
    
L
Li Fuchen 已提交
55 56
    Examples:
        .. code-block:: python
57

L
Li Fuchen 已提交
58 59 60 61 62
            import paddle.nn.functional as F
            import paddle.fluid.dygraph as dg
            import numpy as np
            
            diag_embed = np.random.randn(2, 3).astype('float32')
63 64
            # [[ 0.7545889 , -0.25074545,  0.5929117 ],
            #  [-0.6097662 , -0.01753256,  0.619769  ]]
L
Li Fuchen 已提交
65 66
            with dg.guard():
                data1 = F.diag_embed(diag_embed)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                data1.numpy()
                # [[[ 0.7545889 ,  0.        ,  0.        ],
                #  [ 0.        , -0.25074545,  0.        ],
                #   [ 0.        ,  0.        ,  0.5929117 ]],

                # [[-0.6097662 ,  0.        ,  0.        ],
                #  [ 0.        , -0.01753256,  0.        ],
                #  [ 0.        ,  0.        ,  0.619769  ]]]

                data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
                data2.numpy()
                # [[[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [ 0.7545889 ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        , -0.25074545,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.5929117 ,  0.        ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [-0.6097662 ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        , -0.01753256,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.619769  ,  0.        ]]]

                data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
                data3.numpy()
                # [[[ 0.        ,  0.7545889 ,  0.        ,  0.        ],
                #   [ 0.        , -0.6097662 ,  0.        ,  0.        ]],
                #
                #  [[ 0.        ,  0.        , -0.25074545,  0.        ],
                #   [ 0.        ,  0.        , -0.01753256,  0.        ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.5929117 ],
                #   [ 0.        ,  0.        ,  0.        ,  0.619769  ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.        ,  0.        ]]]
L
Li Fuchen 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    """
    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

    if not isinstance(input, Variable):
        input = assign(input)

    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'diag_embed')

        input_shape = list(input.shape)
114
        assert len(input_shape) >= 1,                     \
L
Li Fuchen 已提交
115 116
                "Input must be at least 1-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
117
                len(input_shape)
L
Li Fuchen 已提交
118

119 120 121
        assert np.abs(dim1) <= len(input_shape),    \
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim1)
L
Li Fuchen 已提交
122

123 124 125
        assert np.abs(dim2) <= len(input_shape),      \
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim2)
L
Li Fuchen 已提交
126 127 128

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
129
        assert dim1_ != dim2_,       \
L
Li Fuchen 已提交
130
               "dim1 and dim2 cannot be the same dimension." \
131
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)
L
Li Fuchen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    if not in_dygraph_mode():
        __check_input(input, offset, dim1, dim2)
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

    helper.append_op(
        type='diag_embed',
        inputs={'Input': [input]},
        attrs={'offset': offset,
               'dim1': dim1,
               'dim2': dim2},
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


150 151 152
@templatedoc()
def row_conv(input, weight, act=None):
    """
S
swtkiwi 已提交
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    ${comment}

    Args:
        input (Variable):  the input(X) is a LodTensor or tensor, LodTensor(X) 
            supports variable  time-length input sequences. The underlying 
            tensor in this LoDTensor is a matrix with shape (T, D), where 
            T is the total time steps in this mini-batch and D is the input 
            data dimension. 
            If the input is a padded minibatch, the shape of the input is 
            (N, T, D), N is batch size, T is the max time steps in the batch,
             D is the input data dimension.
        weight (Variable): The weight. A Tensor with shape 
            (future_context_size + 1, D), where future_context_size is the 
            context size of the RowConv operator.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        ${out_comment}.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            batch_size = 4
            time_steps = 8
            feature_size = 6
            context_size = 4
            x = np.random.randn(batch_size, time_steps, feature_size).astype(np.float32)
            weight = np.random.randn(context_size + 1, feature_size).astype(np.float32)

            place = fluid.CPUPlace()
            with dg.guard(place):
                x_var = dg.to_variable(x)
                w_var = dg.to_variable(weight)
192
                y_var = F.extension.row_conv(x_var, w_var)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                y_np = y_var.numpy()

            print(y_np.shape)

            # (4, 8, 6)
    """

    if in_dygraph_mode():
        pre_act = core.ops.row_conv(input, weight)
        out = dygraph_utils._append_activation_in_dygraph(pre_act, act)
        return out
    else:
        helper = LayerHelper('row_conv', **locals())
        dtype = helper.input_dtype()

        inputs = {'X': [input], 'Filter': [weight]}
        pre_act = helper.create_variable_for_type_inference(dtype)
        outputs = {'Out': [pre_act]}
        helper.append_op(type='row_conv', inputs=inputs, outputs=outputs)
        out = helper.append_activation(pre_act)
    return out