op_teller.cc 97.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24 25
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
26

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

33 34 35 36 37 38
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
39
  SimpleOpTypeSetTeller() {
40
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
41
    // use TensorRT plugin
42
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
43 44
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
45 46
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
47
#endif
W
wenbin 已提交
48 49
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
50
    teller_set.insert("flatten_contiguous_range");
51
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
52 53 54 55
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
56
#endif
W
wenbin 已提交
57
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
58 59
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
60 61
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
62 63 64 65 66 67
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
68
#endif
69 70 71 72 73 74
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
#endif
75 76 77
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
78 79
#endif
  }
80

W
weishengying 已提交
81 82 83 84 85 86 87 88 89 90
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
91
    std::unordered_set<std::string> act_op_list = {
92 93 94 95 96 97 98 99 100 101 102 103
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
        "reciprocal", "tanh_shrink", "logsigmoid"};
104
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
105
      auto* block = desc.Block();
106 107 108 109 110 111
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
112 113 114 115 116 117 118 119
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
120 121 122 123 124 125
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
126 127
    }

128 129
    // In static shape in Paddle-TRT, we can't allow that one op has a
    // 1D intermediate tensor as input.
130 131
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
132 133 134 135 136 137 138 139 140 141 142
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
              if (shape.size() == 1) return false;
            }
          }
143 144 145 146
        }
      }
    }

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

163
    if (op_type == "pool2d") {
164 165 166 167 168 169 170
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

171
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
172
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
173 174
      if (paddings.size() > 2) {
        return false;
175
      }
176 177 178 179 180 181 182 183 184 185
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
186 187
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
188
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
189 190 191 192
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
193 194 195 196
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
197
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
198 199 200 201 202
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
203 204
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
205
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
206
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
207
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
208
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
209
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
210 211 212 213 214 215 216 217 218 219 220 221 222
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
223 224 225 226
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
227 228
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

252 253
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
254 255 256 257
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
258
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
259 260 261 262 263 264 265 266 267 268 269 270 271 272
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
273

W
wenbin 已提交
274
// strides > 1 and 'SAME' is only supported by trt7.0 above
275
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
276 277 278 279
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
280
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
281 282
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
283
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
284 285 286 287 288 289
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
290 291 292 293
          }
        }
      }
#endif
294 295 296 297 298 299 300 301 302
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
303 304
    }

W
wangxinxin08 已提交
305 306 307 308 309
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
310 311 312
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
328
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
329 330 331 332 333 334 335 336
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
337
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
338 339 340 341 342 343 344
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
345
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
346 347 348 349 350 351 352
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

353 354 355 356 357 358
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

359 360 361 362
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
363 364 365 366 367 368 369 370 371
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
372 373
    }

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }

397 398 399 400 401 402 403 404 405 406 407 408 409 410
    if (op_type == "matmul_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      return true;
    }

411 412
    if (op_type == "matmul") {
      auto* block = desc.Block();
413 414 415 416 417 418
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

439 440 441 442 443
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
444
            VLOG(3)
P
Pei Yang 已提交
445 446
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
447 448 449 450 451
            return false;
          }
        }
      }
    }
W
Wilber 已提交
452 453 454 455 456 457 458 459 460 461 462 463
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
464
    if (op_type == "group_norm") {
465 466 467 468
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

469 470
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
471 472 473 474 475 476 477
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
478 479 480 481
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
482
      }
R
Ruibiao Chen 已提交
483
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
484 485
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
486 487 488 489 490
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
491
        }
492 493
      }
    }
494 495 496
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
497 498
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
499
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
500 501 502 503
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
504 505 506 507 508 509
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
510 511 512
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
513
      if (axis.size() != x_shape.size()) return false;
514
      int dims = x_shape.size();
W
wenbin 已提交
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
534
        return false;
535 536
      }
    }
537
    if (op_type == "flatten2" || op_type == "flatten") {
538 539 540
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
541 542
#if IS_TRT_VERSION_GE(7130)
#else
543
        if (with_dynamic_shape) return false;
544
#endif
R
Ruibiao Chen 已提交
545
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
546 547 548
        if (axis != 1) return false;
      }
    }
549 550
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
551 552 553
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
554 555
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
583

584
    if (op_type == "gather") {
585 586 587 588 589 590 591 592 593
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
594
        auto* block = desc.Block();
595 596 597 598 599 600
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
601 602 603 604 605 606 607 608 609 610

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);

        // The index input must be int32 datatype.
        if (index_var_desc->GetDataType() !=
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "gather op Index input data type must be int32";
          return false;
        }
F
feng_shuai 已提交
611
#if !IS_TRT_VERSION_GE(7000)
612 613 614 615 616 617
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
618
#endif
619
      }
620
    }
Z
zlsh80826 已提交
621

622
    if (op_type == "gather_nd") {
623 624
      if (!with_dynamic_shape) return false;

625
      auto* block = desc.Block();
626 627 628 629 630 631
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
632
#if IS_TRT_VERSION_LT(8200)
633 634
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
635 636
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
637 638
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
639 640 641 642 643 644
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

645 646 647 648 649
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
650
#endif
651 652
    }

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

683 684 685 686
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
687 688 689 690 691 692
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
693
      if (!has_attrs) return false;
Z
zlsh80826 已提交
694 695
    }

696 697 698 699 700 701
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

702
    if (op_type == "arg_max" || op_type == "arg_min") {
703 704 705 706 707 708
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

709
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
710
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
711
                     : -1;
X
xiaoxiaohehe001 已提交
712 713 714 715 716 717
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
718
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
719 720
    }

721 722
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
723
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
724
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
725
      if (data_layout != phi::DataLayout::kNCHW) return false;
726 727

      auto* block = desc.Block();
728 729 730 731 732 733
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
734 735 736 737 738 739
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
740 741
    }

742
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
743
      auto* block = desc.Block();
744 745 746 747 748 749
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
750 751 752 753 754 755 756 757
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
758 759 760 761
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
762
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
763 764 765 766 767 768 769 770 771 772 773 774
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

775 776 777
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
778
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
779 780
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
781
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
782 783
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
784
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
785 786 787 788 789 790
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

791
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
792 793
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
794
      for (auto const& attr : attrs) {
795 796
        if (!desc.HasAttr(attr)) return false;
      }
797
      if (desc.HasAttr("data_layout")) {
798
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
799
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
800 801
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
802 803
          return false;
      }
804
      auto interp_method =
R
Ruibiao Chen 已提交
805
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
806
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
807 808 809 810 811
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
812 813 814 815
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
816
        }
817 818
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
819 820
          return false;
        }
821
      }
822 823 824 825 826 827 828 829 830
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
831
    }
832

833
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
834 835 836 837 838 839
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
840
      for (auto const& attr : attrs) {
841 842
        if (!desc.HasAttr(attr)) return false;
      }
843
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
844
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
845 846
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
847 848
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
849
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
850
      if (interp_method != "nearest") return false;
851 852 853 854 855 856 857 858

      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }

R
Ruibiao Chen 已提交
859 860 861
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
862
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
863
        if (scale.size() < 2) return false;
864 865 866 867 868 869 870 871
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

872
    if (op_type == "bilinear_interp_v2") {
C
ccrrong 已提交
873 874 875 876 877 878
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
879
      for (auto const& attr : attrs) {
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
898 899
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
900 901 902 903 904
                  << op_type;
          return false;
        }
      }

905
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
906
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
907 908
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
909 910 911 912 913
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
914
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
915 916 917 918 919 920
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
921 922
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
923 924 925 926 927 928 929 930 931 932 933
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
934
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
935 936 937 938 939 940 941
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
942 943
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

969 970 971 972 973 974 975 976 977 978 979 980 981 982
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

983
    if (op_type == "squeeze2") {
984 985 986 987 988 989 990
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

991 992
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
993
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1012
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1028
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1029 1030
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1031 1032 1033 1034 1035 1036 1037 1038 1039
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1040 1041 1042 1043 1044 1045
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1046 1047 1048 1049 1050 1051
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1062 1063 1064 1065 1066 1067 1068 1069 1070
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
1082 1083
      if (!desc.HasAttr("axis")) {
        return false;
1084
      }
R
Ruibiao Chen 已提交
1085
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1086 1087 1088 1089 1090 1091 1092

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
1093 1094 1095 1096 1097 1098
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1099 1100 1101 1102 1103 1104 1105
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1106
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1107 1108 1109
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1110
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1143 1144
        }
      }
1145 1146 1147 1148
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1149
    }
1150

1151 1152 1153 1154 1155 1156 1157 1158
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1159 1160 1161 1162 1163 1164
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1165 1166 1167
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1168
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
        if (x_shape.size() == 1) {
          VLOG(3)
              << "Scale op does not support 1-dimensional input in tensorrt";
          return false;
        }
      } else {
        // At present, only support float32 or float16 or int32 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
              dtype == framework::proto::VarType::INT32)) {
          return false;
        }
1187
      }
1188
    }
1189

F
feng_shuai 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1201 1202 1203 1204 1205
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1206 1207 1208 1209 1210 1211 1212 1213
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1265 1266 1267 1268 1269
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1270 1271 1272
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1283
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1284 1285
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1286 1287 1288 1289 1290
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1291 1292
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1293 1294 1295 1296 1297
          return false;
        }
      }
    }

1298
    if (op_type == "slice") {
1299 1300
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1301
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1302 1303 1304
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1305 1306
            return false;
          }
1307 1308
        }
      }
1309 1310
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1311
        VLOG(3) << "The necessary attributes of the slice operator axes "
1312
                   " are missing.";
1313 1314
        return false;
      } else {
1315
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1326 1327
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1328 1329 1330 1331 1332 1333 1334 1335
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1336
          return false;
1337 1338 1339 1340 1341 1342 1343 1344
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1345 1346
        }
      }
1347 1348 1349 1350 1351 1352 1353 1354
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1355
          return false;
1356 1357 1358 1359 1360 1361 1362 1363
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1376 1377
    }

1378 1379 1380 1381
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
        op_type == "logical_and" || op_type == "less_equal") {
#if IS_TRT_VERSION_GE(8400)
1382
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1383
      if (!with_dynamic_shape) {
1384
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1385 1386
        return false;
      }
1387 1388 1389 1390 1391
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1392 1393 1394 1395
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
          op_type == "less_equal") {
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1407 1408 1409 1410 1411 1412 1413 1414
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1415
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1416
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1417
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
W
wenbin 已提交
1418
        op_type == "elementwise_max" || op_type == "elementwise_floordiv") {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1437
      auto* block = desc.Block();
1438 1439 1440 1441 1442 1443
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1444 1445 1446 1447
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
          op_type == "elementwise_max" || op_type == "elementwise_floordiv") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
          VLOG(3) << "These operations "
                     "(elementwise_add/mul/sub/div/pow/min/max/floordiv) do "
                     "not support boolean datatype.";
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1472 1473 1474 1475 1476 1477
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1478 1479
        return false;
      }
1480 1481 1482 1483
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1484
        return false;
1485
      }
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1498 1499 1500 1501 1502 1503 1504 1505
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1532 1533
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1534 1535 1536
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1561

1562
#if IS_TRT_VERSION_LT(7000)
1563
      if (desc.HasAttr("approximate")) {
1564
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1565
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1566
      }
1567
#endif
1568 1569

      auto* block = desc.Block();
1570 1571 1572 1573 1574 1575
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1576

1577 1578 1579 1580 1581 1582 1583
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
1623 1624 1625
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1626 1627 1628 1629 1630 1631
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1669 1670
    }

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
1686
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1687 1688
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1689 1690 1691 1692
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1693 1694
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1695 1696 1697 1698 1699 1700
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1701 1702 1703 1704 1705 1706 1707 1708
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1709
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1722 1723
    }

1724 1725
    if (op_type == "swish") {
      auto* block = desc.Block();
1726 1727 1728 1729 1730 1731
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1732 1733 1734 1735 1736 1737 1738 1739 1740
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1754 1755

      auto* block = desc.Block();
1756 1757 1758 1759 1760 1761
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1762 1763 1764 1765 1766 1767 1768 1769 1770
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1771 1772 1773
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1774 1775 1776
        return false;
      }

W
Wilber 已提交
1777 1778 1779 1780 1781 1782 1783
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1784 1785
    }

W
wangxinxin08 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1817 1818 1819 1820 1821 1822 1823
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1824 1825 1826 1827
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1828
                                     "aligned"};
1829
      for (auto const& attr : attrs) {
1830 1831 1832 1833
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1834
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1835 1836 1837
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1838
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1839 1840 1841
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1842
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1843 1844 1845 1846 1847 1848 1849 1850
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1851 1852 1853
    }

    if (op_type == "shuffle_channel") {
1854
#if !IS_TRT_VERSION_GE(8000)
1855 1856
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1857 1858
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1859 1860
        return false;
      }
1861
#endif
1862 1863
    }

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
        if (desc.Input("depth_tensor").size() != 0) {
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1914 1915 1916 1917 1918 1919 1920
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1932 1933 1934 1935 1936
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
1953
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
1963
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
1964 1965
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
1966 1967 1968 1969
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
1970 1971
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
1972 1973 1974 1975 1976 1977 1978
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
1979 1980 1981
          return false;
        }
      } else {
1982 1983 1984
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
1985
        return false;
F
feng_shuai 已提交
1986
#endif
1987
      }
1988 1989
    }

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

2042
    if (op_type == "fc") {
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
2069 2070
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes =
      "
2071 2072 2073 2074 2075 2076
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
R
Ruibiao Chen 已提交
2077
            PADDLE_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
2078 2079 2080 2081 2082 2083 2084
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
2085 2086
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
2087
              ? PADDLE_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
2088
              : (desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
2089
                     ? PADDLE_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
2090 2091
                     : 1);
      if (x_num_col_dims < 1) {
2092 2093 2094
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
2095 2096 2097
        return false;
      }
    }
2098

W
Wangzheee 已提交
2099 2100 2101
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2102
      }
2103 2104 2105 2106
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2107
      auto reshape_inputs = desc.Inputs();
2108 2109 2110 2111 2112 2113 2114 2115 2116
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
2117
      }
W
Wilber 已提交
2118
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2119
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2120
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2132 2133 2134 2135
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2136 2137 2138 2139
          if (input_num == shape_num) {
            return true;
          }
        }
2140
        return false;
X
xiaoxiaohehe001 已提交
2141
      }
W
Wangzheee 已提交
2142
    }
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2159 2160 2161 2162 2163 2164
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2165 2166 2167 2168 2169
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }

2170
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2171 2172
        op_type == "reduce_max" || op_type == "reduce_min" ||
        op_type == "reduce_prod") {
2173 2174 2175 2176 2177 2178 2179
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2180 2181
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2182 2183
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2184
                   "reduce_all)";
2185 2186 2187 2188 2189 2190 2191 2192
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2193 2194
        return false;
      }
W
wenbin 已提交
2195 2196

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2197
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2198
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2199
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2200
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2201
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2202
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2203
        for (auto x : dim) {
2204
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2205
        }
2206

2207
      } else {
R
Ruibiao Chen 已提交
2208 2209
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2210 2211
          return false;
      }
2212 2213 2214 2215 2216 2217 2218

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
2219
      }
2220 2221
#else
      if (dtype != framework::proto::VarType::FP32) {
2222 2223
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2224 2225 2226
        return false;
      }
#endif
2227
    }
W
wenbin 已提交
2228 2229 2230
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2231 2232 2233
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
2234
          return false;
2235 2236 2237 2238
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
2239
          return false;
2240
        }
W
wenbin 已提交
2241 2242 2243 2244 2245
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
2246

2247 2248 2249 2250 2251
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2252 2253
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2254
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2255 2256 2257 2258 2259 2260
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2261
#endif
2262 2263
    }

W
wenbin 已提交
2264 2265 2266
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2267
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2282

W
wenbin 已提交
2283
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2284
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2306
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2324 2325 2326 2327
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2328 2329 2330
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2331 2332 2333 2334 2335
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2336 2337 2338
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2339 2340 2341 2342 2343
          return false;
        }
      }
    }

C
ccrrong 已提交
2344
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2345 2346 2347 2348
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2349 2350 2351 2352 2353 2354
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2355 2356
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2357

2358
      if (in_dtype == 0 || out_dtype == 0) {
2359
#if IS_TRT_VERSION_GE(8400)
2360 2361 2362 2363 2364 2365
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2366 2367 2368 2369
        return false;
      }
    }

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2381
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2382 2383 2384 2385 2386 2387 2388
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2389
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2390 2391 2392 2393 2394 2395 2396 2397
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2408
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2409
#if !IS_TRT_VERSION_GE(8000)
2410
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2411 2412
      return false;
#else
2413 2414 2415 2416 2417 2418
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2419 2420 2421
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2422
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2436 2437 2438 2439 2440 2441 2442
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2452 2453 2454 2455 2456 2457 2458
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2459

W
Wang Bojun 已提交
2460 2461 2462 2463 2464 2465 2466
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2467 2468 2469 2470 2471 2472 2473 2474
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

2491 2492 2493 2494 2495 2496 2497 2498
    if (op_type == "lookup_table") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2499 2500 2501 2502 2503 2504 2505 2506 2507
    if (op_type == "expand_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
    }

W
weishengying 已提交
2508 2509 2510 2511 2512
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2513
  }
W
wenbin 已提交
2514

W
weishengying 已提交
2515 2516 2517 2518 2519
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
2520
      "matmul_v2",
2521
      "bmm",
2522
      "range",
W
weishengying 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2546
      "acosh",
W
weishengying 已提交
2547 2548 2549
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2550
      "rsqrt",
2551
      "sign",
G
gem5 已提交
2552
      "reciprocal",
2553
      "logical_not",
W
weishengying 已提交
2554
      "erf",
2555
      "square",
W
weishengying 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2569 2570
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2571
      "elementwise_floordiv",
W
weishengying 已提交
2572
      "equal",
S
Sanbu 已提交
2573
      "not_equal",
2574 2575 2576 2577 2578 2579
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
W
weishengying 已提交
2580
      "dropout",
2581
      "fill_any_like",
W
weishengying 已提交
2582 2583 2584 2585 2586 2587
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2588
      "where",
2589 2590
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2591 2592
      "swish",
      "silu",
2593
      "celu",
W
weishengying 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2608
      "group_norm",
W
weishengying 已提交
2609 2610 2611
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2612
      "arg_min",
W
weishengying 已提交
2613 2614 2615 2616
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2617
      "reduce_max",
W
weishengying 已提交
2618
      "reduce_mean",
2619
      "reduce_sum",
W
weishengying 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2632
      "multihead_matmul_roformer",
W
weishengying 已提交
2633 2634 2635 2636
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2637
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2653
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2654
      "reverse_roll",
2655
      "take_along_axis",
2656 2657
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2658
      "preln_layernorm_shift_partition",
2659
      "lookup_table",
W
wenbin 已提交
2660 2661
      "merge_layernorm",
      "skip_merge_layernorm",
2662
      "lookup_table_v2",
W
wenbin 已提交
2663 2664 2665
      "expand_v2",
      "skip_groupnorm_act",
      "preln_groupnorm_act"};
W
wenbin 已提交
2666

W
weishengying 已提交
2667 2668 2669
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
2670
      "matmul_v2",
2671
      "bmm",
2672
      "range",
W
weishengying 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2696
      "acosh",
W
weishengying 已提交
2697 2698 2699
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2700
      "rsqrt",
2701
      "sign",
G
gem5 已提交
2702
      "reciprocal",
2703
      "logical_not",
W
weishengying 已提交
2704
      "erf",
2705
      "square",
W
weishengying 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2719 2720
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2721
      "elementwise_floordiv",
W
weishengying 已提交
2722
      "equal",
S
Sanbu 已提交
2723
      "not_equal",
2724 2725 2726 2727 2728 2729
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
W
weishengying 已提交
2730
      "dropout",
2731
      "fill_any_like",
W
weishengying 已提交
2732 2733 2734 2735 2736 2737
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2738
      "where",
2739 2740
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2741 2742
      "swish",
      "silu",
2743
      "celu",
W
weishengying 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2761
      "arg_min",
W
weishengying 已提交
2762 2763 2764 2765
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2766
      "reduce_max",
W
weishengying 已提交
2767
      "reduce_mean",
2768
      "reduce_sum",
W
weishengying 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2781
      "multihead_matmul_roformer",
W
weishengying 已提交
2782 2783 2784 2785 2786
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
2787
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
2803
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2804
      "reverse_roll",
2805
      "tanh_shrink",
2806
      "take_along_axis",
2807
      "logsigmoid",
W
wenbin 已提交
2808
      "preln_layernorm_shift_partition",
W
Wang Bojun 已提交
2809
      "merge_layernorm",
W
wenbin 已提交
2810
      "skip_merge_layernorm",
2811
      "lookup_table",
2812
      "lookup_table_v2",
W
wenbin 已提交
2813 2814 2815
      "expand_v2",
      "skip_groupnorm_act",
      "preln_groupnorm_act"};
W
weishengying 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
2829 2830 2831 2832
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
2833 2834 2835 2836 2837 2838 2839 2840
    if (op_type == "pad3d") {
      auto pad3d_inputs = desc.Inputs();
      if (pad3d_inputs.find("Paddings") != pad3d_inputs.end()) {
        if (desc.Input("Paddings").size() >= 1) {
          return false;
        }
      }
    }
W
weishengying 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
2899 2900 2901 2902 2903 2904
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::Default);
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::GenericPluginCreater);
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::CustomPluginCreater);
    return true;
  }
2920 2921
  return false;
}
2922

W
weishengying 已提交
2923 2924 2925 2926 2927
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
2928 2929 2930
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle