pybind.cc 28.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
40 41 42 43
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
44 45
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
46
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
48

49
#include "paddle/fluid/string/to_string.h"
50

D
Dong Zhihong 已提交
51
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
55 56
#endif

Q
Qiao Longfei 已提交
57 58 59
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

60
namespace paddle {
61
namespace pybind {
62
bool IsCompiledWithCUDA() {
63
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
64 65 66 67 68 69
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
70 71 72 73 74 75 76 77
bool IsCompiledWithDIST() {
#ifdef PADDLE_WITH_DIST
  return true;
#else
  return false;
#endif
}

78 79
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
80

81 82 83 84
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

85
  BindException(&m);
Y
Yu Yang 已提交
86

87 88 89
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
90
      .def("_get_dims",
91
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
92
      .def("_set_dims",
Q
qijun 已提交
93
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
94
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
95
           })
Y
yuyang18 已提交
96
      .def("_set_layout",
D
dzhwinter 已提交
97 98 99
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
100
      .def("_alloc_float",
D
dzhwinter 已提交
101
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
102
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
103
           })
Y
yuyang18 已提交
104
      .def("_alloc_float",
Y
Yu Yang 已提交
105
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
106
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
107
           })
Y
yuyang18 已提交
108
      .def("_alloc_int",
Y
Yu Yang 已提交
109
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
110
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
111
           })
Y
yuyang18 已提交
112
      .def("_alloc_int",
D
dzhwinter 已提交
113
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
114
             self.mutable_data<int>(place);
Q
qijun 已提交
115
           })
Y
yuyang18 已提交
116
      .def("_alloc_int",
C
chengduoZH 已提交
117 118 119
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
120
      .def("_alloc_float",
C
chengduoZH 已提交
121 122 123
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
124 125
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
126
      .def("set", PyCPUTensorSetFromArray<double>)
127
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
128
      .def("set", PyCPUTensorSetFromArray<bool>)
129
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
130
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
131
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
132 133
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
134
      .def("set", PyCUDATensorSetFromArray<double>)
135
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
136
      .def("set", PyCUDATensorSetFromArray<bool>)
137
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
138
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
C
chengduoZH 已提交
139 140 141 142 143 144
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
145
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qijun 已提交
146
#endif
147
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
148 149 150 151 152
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
153

154
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
155 156
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
157 158 159 160 161 162 163 164 165 166 167 168 169 170
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
171
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
172 173 174 175 176
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
177
      .def("set_lod",
178
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
179
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
180
             LoD new_lod;
181 182
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
183 184
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
185
             self.set_lod(new_lod);
D
dangqingqing 已提交
186
           })
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
212
      // Set above comments of set_lod.
213 214 215 216 217 218 219 220 221 222 223 224 225
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
226 227
      });

Q
qijun 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
241 242 243 244 245 246 247 248 249
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
250 251 252 253 254 255 256 257 258 259 260
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
261

262
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
263 264 265

All parameter, weight, gradient are variables in Paddle.
)DOC")
266
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
267
      .def("set_int",
268 269
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
270 271 272 273 274 275 276
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
277
      .def("get_tensor",
278 279
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
280 281
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
282 283 284
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
285 286 287 288 289
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
290 291 292
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
293 294 295 296 297 298 299
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
300 301 302 303 304
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
305
           py::return_value_policy::reference);
306

Y
Refine  
Yu Yang 已提交
307
  py::class_<framework::ReaderHolder>(m, "Reader", "")
308
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
309

S
sneaxiy 已提交
310 311 312 313
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
314 315
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
316
      .def("push",
S
sneaxiy 已提交
317
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
318
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
319
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
320
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
321
           })
S
sneaxiy 已提交
322 323 324 325
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
326

S
sneaxiy 已提交
327
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
328
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
329
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
330
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
331 332 333 334 335 336 337
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
338
              return holder->GetQueue();
S
sneaxiy 已提交
339
            },
S
sneaxiy 已提交
340
        py::return_value_policy::copy);
S
sneaxiy 已提交
341

342
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
343
      .def("var",
344
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
345
             return self.Var(name);
Y
Yu Yang 已提交
346
           },
347
           py::return_value_policy::reference)
348
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
349
      .def(py::init<>())
350
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
351
           py::return_value_policy::reference)
Y
Yu Yang 已提交
352
      .def("drop_kids", &Scope::DropKids);
353

Y
Yu Yang 已提交
354 355
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
356 357
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
358 359 360 361 362 363 364 365 366 367
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
368 369
    return ret_values;
  });
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
386
  m.def("prune", [](const ProgramDesc &origin,
387
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
388
    ProgramDesc prog_with_targets(origin);
389
    for (const auto &t : targets) {
390
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
391
    }
392
    proto::ProgramDesc pruned_desc;
393
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
394
    return new ProgramDesc(pruned_desc);
395
  });
Y
Yu Yang 已提交
396
  m.def("inference_optimize", [](ProgramDesc &origin) {
397
    proto::ProgramDesc pruned_desc;
398
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
399
    return new ProgramDesc(pruned_desc);
400
  });
F
fengjiayi 已提交
401 402
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
403 404 405
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
406 407
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
408
  // clang-format off
Y
Yu Yang 已提交
409
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
410 411
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
412
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
413 414 415
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
416
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
417
                      -> paddle::platform::DeviceContext* {
418
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
419
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
420
#else
Q
qijun 已提交
421
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
422
#endif
C
chengduoZH 已提交
423 424 425 426 427 428 429 430 431 432 433
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
434 435 436 437
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
438
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
439
      .def(py::init<int>())
D
dzhwinter 已提交
440
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
441

442 443 444
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
445

C
chengduoZH 已提交
446 447 448 449
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
450 451 452 453 454 455 456
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
457
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
458
             self = gpu_place;
C
chengduoZH 已提交
459 460
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
461 462
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
463
      });
Y
Yu Yang 已提交
464

Y
Yu Yang 已提交
465 466 467
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
468
                    proto::OpDesc desc;
Y
Yu Yang 已提交
469 470 471 472 473
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
474
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
475
                  })
476
      .def("run",
477
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
478 479 480
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
481
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
482 483 484 485 486
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
487 488 489 490 491 492 493
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
494 495
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
496
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
497
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
498 499 500 501
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
502

F
fengjiayi 已提交
503
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
504
      .def(py::init<const platform::Place &>())
W
Wu Yi 已提交
505
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
506 507
      .def("begin_pass", &Executor::BeginPass)
      .def("end_pass", &Executor::EndPass)
W
Wu Yi 已提交
508
#endif
S
sneaxiy 已提交
509 510 511 512 513
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
514

D
dzhwinter 已提交
515
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
516
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
517 518
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
519

520
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
521
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
522 523 524 525 526 527
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
528

529
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
530
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
531

532 533 534 535 536
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
537

Y
Yu Yang 已提交
538 539 540 541 542 543 544 545 546
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
547
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
548 549
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
566 567 568
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
569
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
570
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
571
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
572 573 574 575

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
576
#endif
Y
Yu Yang 已提交
577

578 579 580 581
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
582
      .value("kAll", platform::ProfilerState::kAll)
583 584 585 586 587 588 589 590 591 592 593 594 595
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
596
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
597
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
598

Y
yuyang18 已提交
599
  // -- python binds for parallel executor.
Y
yuyang18 已提交
600 601 602 603 604 605 606 607 608 609
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
  py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
      .def(py::init())
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
610 611 612 613
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
614 615 616 617 618 619
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
620 621 622 623 624 625 626 627
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
628
          });
Y
yuyang18 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
654 655 656 657 658 659
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
F
fengjiayi 已提交
660 661 662 663 664
          })
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
          [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; });
Y
yuyang18 已提交
665 666 667 668

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
669
                  const std::string &, Scope *, std::vector<Scope *> &,
670 671
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yancey1989 已提交
672
      .def("bcast_params", &ParallelExecutor::BCastParamsToDevs)
Y
Yu Yang 已提交
673 674 675 676
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
677 678 679 680 681
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
682 683 684 685
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
686 687 688 689 690 691
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
692

693
  BindRecordIOWriter(&m);
694
  return m.ptr();
L
Luo Tao 已提交
695
}
696
}  // namespace pybind
697
}  // namespace paddle