unique_functor.h 14.7 KB
Newer Older
C
csy0225 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
namespace funcs {

template <typename Context, typename InT>
struct UniqueOpFunctor {
  const Context& context_;
  DenseTensor* out_;
  DenseTensor* index_;
  const DenseTensor* in_;
  DenseTensor* count_;

  UniqueOpFunctor(const Context& context,
                  DenseTensor* out,
                  DenseTensor* index,
                  const DenseTensor* in,
                  DenseTensor* count = nullptr)
      : context_(context), out_(out), index_(index), in_(in), count_(count) {}

  template <typename IndexT>
  void apply() const {
    auto* in_data = in_->data<InT>();
    auto* index_data = context_.template Alloc<IndexT>(index_);

    int64_t j = 0;

    // TODO(fangzeyang): Should optimize performance here.
    std::unordered_map<InT, int64_t> dict;
    std::vector<InT> uniq;

    PADDLE_ENFORCE_LT(
        in_->numel(),
        pow(2, 31),
        phi::errors::InvalidArgument(
            "The num of Input(X) elements should be less then INT_MAX, "
            "but received num is %d.",
            in_->numel()));

    for (auto i = 0; i < in_->numel(); i++) {
      auto it = dict.find(in_data[i]);
      if (it == dict.end()) {
        dict.emplace(std::make_pair(in_data[i], j));
        uniq.emplace_back(in_data[i]);
        index_data[i] = static_cast<IndexT>(j);
        j++;
      } else {
        index_data[i] = static_cast<IndexT>(it->second);
      }
    }

    if (count_ != nullptr) {
      // Resize the count tensor dims to allocate the memory
      count_->Resize(phi::make_ddim({static_cast<int64_t>(uniq.size())}));
      IndexT* count_data = context_.template Alloc<IndexT>(count_);
      // init count_data to 0
      memset(count_data, 0, uniq.size() * sizeof(IndexT));

      const auto& index_type = index_->dtype();
      bool index_type_match =
          index_type == DataType::INT32 || index_type == DataType::INT64;
      PADDLE_ENFORCE_EQ(
          index_type_match,
          true,
          phi::errors::InvalidArgument(
              "Index holds the wrong type, it holds %s, "
              "but desires to be %s or %s",
              paddle::framework::DataTypeToString(
                  paddle::framework::TransToProtoVarType(index_type)),
              paddle::framework::DataTypeToString(
                  paddle::framework::TransToProtoVarType(DataType::INT32)),
              paddle::framework::DataTypeToString(
                  paddle::framework::TransToProtoVarType(DataType::INT64))));

      if (index_type == DataType::INT32) {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int32_t>(index)] += static_cast<IndexT>(1);
        }
      } else {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int64_t>(index)] += static_cast<IndexT>(1);
        }
      }
    }

    out_->Resize(phi::make_ddim({static_cast<int64_t>(uniq.size())}));
    auto* out_data = context_.template Alloc<InT>(out_);
    std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
  }
};

static std::vector<DenseTensor> Unbind(const DenseTensor& in) {
  int64_t size = in.dims()[0];
  std::vector<DenseTensor> tensors(size);
  for (int64_t i = 0; i < size; ++i) {
    tensors[i] = in.Slice(i, i + 1);
  }
  return tensors;
}

template <typename T>
static bool Equal(const DenseTensor& a, const DenseTensor& b) {
  if (a.numel() != b.numel()) {
    return false;
  }
  for (int64_t i = 0; i < a.numel(); ++i) {
    if (a.data<T>()[i] != b.data<T>()[i]) {
      return false;
    }
  }
  return true;
}

template <typename Context, typename InT, typename IndexT>
static void UniqueFlattendTensor(const Context& context,
                                 const DenseTensor& in,
                                 DenseTensor* out,
                                 DenseTensor* indices,
                                 DenseTensor* index,
                                 DenseTensor* count,
                                 bool return_index,
                                 bool return_inverse,
                                 bool return_counts) {
  const InT* in_data = in.data<InT>();
  std::set<InT> unique(in_data, in_data + in.numel());
  out->Resize(phi::make_ddim({static_cast<int64_t>(unique.size())}));
  auto* out_data = context.template Alloc<InT>(out);
  std::copy(unique.begin(), unique.end(), out_data);

  if (return_index) {
    indices->Resize(phi::make_ddim({out->numel()}));
    auto indices_data = context.template Alloc<IndexT>(indices);
    std::unordered_map<InT, IndexT> indices_map;
    indices_map.reserve(out->numel());
    for (int64_t i = 0; i < in.numel(); ++i) {
      if (indices_map.find(in_data[i]) != indices_map.end()) continue;
      indices_map[in_data[i]] = i;
    }
    for (int64_t i = 0; i < out->numel(); ++i) {
      indices_data[i] = indices_map[out_data[i]];
    }
  }

  if (return_inverse) {
    index->Resize(phi::make_ddim({in.numel()}));
    auto inverse_data = context.template Alloc<IndexT>(index);
    std::unordered_map<InT, IndexT> inverse_map;
    inverse_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      inverse_map[out_data[i]] = i;
    }
    for (int64_t i = 0; i < in.numel(); ++i) {
      inverse_data[i] = inverse_map[in_data[i]];
    }
  }

  if (return_counts) {
    count->Resize(phi::make_ddim({out->numel()}));
    auto count_data = context.template Alloc<IndexT>(count);
    std::unordered_map<InT, IndexT> counts_map;
    counts_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      counts_map[out_data[i]] = 0;
    }
    for (int64_t i = 0; i < in.numel(); i++) {
      counts_map[in_data[i]] += 1;
    }
    for (int64_t i = 0; i < out->numel(); i++) {
      count_data[i] = counts_map[out_data[i]];
    }
  }
}

template <typename Context, typename ForwardIt, typename InT, typename IndexT>
static ForwardIt UniqueDimImpl(const Context& context,
                               ForwardIt first,
                               ForwardIt last,
                               const std::vector<IndexT>& sorted_indices_vec,
                               std::vector<IndexT>* inverse_vec,
                               std::vector<IndexT>* counts_vec,
                               std::vector<IndexT>* indices_vec) {
  if (first == last) {
    return last;
  }

  (*inverse_vec)[sorted_indices_vec[0]] = 0;
  (*counts_vec)[0] = 1;
  (*indices_vec)[0] = sorted_indices_vec[0];

  ForwardIt begin = first;
  ForwardIt result = first;

  while (++first != last) {
    int64_t idx_first = std::distance(begin, first);
    int64_t idx_result = std::distance(begin, result);
    if (!Equal<InT>(*result, *first)) {
      if (++result != first) {
        *result = std::move(*first);
      }
      idx_result += 1;
      (*indices_vec)[idx_result] = sorted_indices_vec[idx_first];
    }
    (*inverse_vec)[sorted_indices_vec[idx_first]] = idx_result;
    (*counts_vec)[idx_result] += 1;
  }
  return ++result;
}

template <typename Context, typename InT, typename IndexT>
static void UniqueDim(const Context& context,
                      const DenseTensor& in,
                      DenseTensor* out,
                      DenseTensor* indices,
                      DenseTensor* index,
                      DenseTensor* count,
                      bool return_index,
                      bool return_inverse,
                      bool return_counts,
                      int axis) {
  // transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
  std::vector<int> permute(in.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis] = 0;
  permute[0] = axis;
  std::vector<int64_t> in_trans_dims_vec(phi::vectorize(in.dims()));
  in_trans_dims_vec[axis] = in.dims()[0];
  in_trans_dims_vec[0] = in.dims()[axis];
  DenseTensor in_trans;
  phi::DDim in_trans_dims = phi::make_ddim(in_trans_dims_vec);
  in_trans.Resize(in_trans_dims);
  context.template Alloc<InT>(&in_trans);
  TransCompute<Context, InT>(in.dims().size(), context, in, &in_trans, permute);
  // reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
  phi::DDim in_trans_flat_dims = phi::flatten_to_2d(in_trans_dims, 1);
  in_trans.Resize(in_trans_flat_dims);

  // sort indices
  std::vector<IndexT> sorted_indices_vec(in_trans.dims()[0]);
  std::iota(sorted_indices_vec.begin(), sorted_indices_vec.end(), 0);
  int64_t col = in_trans.dims()[1];
  const InT* in_trans_data = in_trans.data<InT>();
  std::sort(sorted_indices_vec.begin(),
            sorted_indices_vec.end(),
            [&](int64_t a, int64_t b) -> bool {
              for (int64_t i = 0; i < col; ++i) {
                InT lhs = in_trans_data[i + a * col];
                InT rhs = in_trans_data[i + b * col];
                if (lhs < rhs) {
                  return true;
                } else if (lhs > rhs) {
                  return false;
                }
              }
              return false;
            });

  // sort tensor according to indices
  DenseTensor input_sorted;
  input_sorted.Resize(in_trans_dims);
  context.template Alloc<InT>(&input_sorted);
  InT* input_sorted_data = input_sorted.data<InT>();
  for (size_t i = 0; i < sorted_indices_vec.size(); ++i) {
    memcpy(input_sorted_data + i * col,
           in_trans_data + static_cast<int64_t>(sorted_indices_vec[i]) * col,
           col * sizeof(InT));
  }

  std::vector<DenseTensor> input_unbind = Unbind(input_sorted);
  std::vector<IndexT> inverse_vec(sorted_indices_vec.size(), 0);
  std::vector<IndexT> counts_vec(sorted_indices_vec.size(), 0);
  std::vector<IndexT> indices_vec(sorted_indices_vec.size(), 0);
  auto last = UniqueDimImpl<Context, std::vector<DenseTensor>::iterator, InT>(
      context,
      input_unbind.begin(),
      input_unbind.end(),
      sorted_indices_vec,
      &inverse_vec,
      &counts_vec,
      &indices_vec);
  input_unbind.erase(last, input_unbind.end());
  counts_vec.erase(counts_vec.begin() + input_unbind.size(), counts_vec.end());
  indices_vec.erase(indices_vec.begin() + input_unbind.size(),
                    indices_vec.end());

  phi::funcs::ConcatFunctor<Context, InT> concat_functor;
  DenseTensor out_trans;
  std::vector<int64_t> out_trans_dims_vec = in_trans_dims_vec;
  out_trans_dims_vec[0] = input_unbind.size();
  out_trans.Resize(phi::make_ddim(out_trans_dims_vec));
  context.template Alloc<InT>(&out_trans);
  std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]);
  out->Resize(phi::make_ddim(out_trans_dims_vec));
  context.template Alloc<InT>(out);
  concat_functor(context, input_unbind, 0, &out_trans);
  TransCompute<Context, InT>(
      out_trans.dims().size(), context, out_trans, out, permute);

  if (return_inverse) {
    paddle::framework::TensorFromVector(inverse_vec, context, index);
  }

  if (return_counts) {
    paddle::framework::TensorFromVector(counts_vec, context, count);
  }

  if (return_index) {
    paddle::framework::TensorFromVector(indices_vec, context, indices);
  }
}

template <typename Context, typename InT>
struct UniqueFlattendTensorFunctor {
  const Context& ctx_; /*  */
  const DenseTensor& in_;
  DenseTensor* out_;
  DenseTensor* indices_;
  DenseTensor* index_;
  DenseTensor* count_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueFlattendTensorFunctor(const Context& context,
                              const DenseTensor& in,
                              DenseTensor* out,
                              DenseTensor* indices,
                              DenseTensor* index,
                              DenseTensor* count,
                              bool return_index,
                              bool return_inverse,
                              bool return_counts)
      : ctx_(context),
        in_(in),
        out_(out),
        indices_(indices),
        index_(index),
        count_(count),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
    UniqueFlattendTensor<Context, InT, IndexT>(ctx_,
                                               in_,
                                               out_,
                                               indices_,
                                               index_,
                                               count_,
                                               return_index_,
                                               return_inverse_,
                                               return_counts_);
  }
};

template <typename Context, typename InT>
struct UniqueDimFunctor {
  const Context& ctx_;
  const DenseTensor& in_;
  DenseTensor* out_;
  DenseTensor* indices_;
  DenseTensor* index_;
  DenseTensor* count_;
  const int axis_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueDimFunctor(const Context& context,
                   const DenseTensor& in,
                   DenseTensor* out,
                   DenseTensor* indices,
                   DenseTensor* index,
                   DenseTensor* count,
                   const int axis,
                   bool return_index,
                   bool return_inverse,
                   bool return_counts)
      : ctx_(context),
        in_(in),
        out_(out),
        indices_(indices),
        index_(index),
        count_(count),
        axis_(axis),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
    UniqueDim<Context, InT, IndexT>(ctx_,
                                    in_,
                                    out_,
                                    indices_,
                                    index_,
                                    count_,
                                    return_index_,
                                    return_inverse_,
                                    return_counts_,
                                    axis_);
  }
};

}  // namespace funcs
}  // namespace phi