trainer.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
25
#include "paddle/fluid/framework/data_set.h"
26 27 28 29 30 31 32
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
33
#include "paddle/fluid/platform/port.h"
34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
45
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
46
  virtual void Initialize(const TrainerDesc& trainer_desc,
47
                          Dataset* data_set) = 0;
48 49 50 51 52
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
53
  virtual Scope* GetWorkerScope(int thread_id) = 0;
54 55 56 57

 protected:
  Scope* root_scope_;
  bool debug_;
58
  Dataset* dataset_ptr_;
59 60 61 62 63 64 65 66 67
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
68
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
69 70
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
71
  virtual void InitOtherEnv(const ProgramDesc& main_program);
72 73
  virtual void Run();
  virtual void Finalize();
74 75
  virtual void FinalizeDumpEnv();
  virtual void InitDumpEnv();
76
  virtual Scope* GetWorkerScope(int thread_id);
77
  virtual void DumpWork(int tid);
78 79 80 81

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
82
  std::vector<DataFeed*> readers_;
83
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
84
  std::vector<std::string> need_merge_var_names_;
85 86 87 88 89 90 91 92 93 94 95

  bool need_dump_field_;
  std::string dump_fields_path_;
  std::string dump_converter_;
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;

  std::vector<std::thread> dump_thread_;
  int dump_thread_num_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
96 97 98 99 100 101
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
102
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
103 104
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
105
  virtual void InitOtherEnv(const ProgramDesc& main_program);
106
  virtual void Run();
107
  virtual void Finalize();
108 109
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
110 111
  virtual void FinalizeDumpEnv();
  virtual void InitDumpEnv();
112
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
113
  virtual void DumpWork(int tid);
114 115 116 117 118

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

119
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
120 121 122 123 124 125 126 127 128 129
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
  void InitOtherEnv(const ProgramDesc& main_program) override {}
  void Run() override;
  void Finalize() override;
130
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

 protected:
  int section_num_;
  int pipeline_num_;
  int scope_queue_size_;
  int sync_steps_;

  SectionWorkerParameter pipeline_config_;

  // The in/output var names for each section
  std::vector<std::unique_ptr<std::vector<std::string>>> in_var_names_;
  std::vector<std::unique_ptr<std::vector<std::string>>> out_var_names_;

  // Counter for the running thread
  std::vector<std::vector<int*>> worker_count_;
  std::vector<std::vector<std::unique_ptr<std::mutex>>> worker_count_mutex_;

  // worker: [section_id][pipeline_id][thread_id]
  std::vector<std::vector<
      std::vector<std::shared_ptr<paddle::framework::DeviceWorker>>>>
      workers_;
  std::vector<std::thread> section_threads_;

  // We use scope to maintain context info, and scopes
  // will be deliverd between different sections.
  std::vector<std::vector<std::unique_ptr<ScopeQueue>>> scope_queues_;
  std::vector<Scope*> pipeline_scopes_;

  // The parameters that should be syncronized between different cards using
  // nccl all-reduce
  std::shared_ptr<std::vector<std::string>> param_need_sync_;
H
hutuxian 已提交
162
  std::vector<std::string> persistable_vars_;
H
hutuxian 已提交
163 164 165
  std::vector<std::unique_ptr<SyncFunctor>> sync_functors_;
  std::shared_ptr<platform::NCCLContextMap> nccl_ctx_map_;

J
jiaqi 已提交
166
  std::vector<DataFeed*> readers_;
H
hutuxian 已提交
167 168

  void InitFirstScopeQueue(ScopeQueue* scope_queue, int pipeline_id,
H
hutuxian 已提交
169 170
                           const ProgramDesc& main_program,
                           const Scope& root_scope);
H
hutuxian 已提交
171 172 173 174
  void CopyParameters(const Scope& root_scope, int pipeline_id);
  void construct_sync_functor();
};
#endif
175 176
}  // namespace framework
}  // namespace paddle