adam_op_npu.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

18
#include "paddle/fluid/framework/tensor_util.h"
19
#include "paddle/fluid/operators/optimizers/adam_op.h"
20
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename DeviceContext, typename T>
class AdamNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
    auto* param = ctx.Input<LoDTensor>("Param");
    auto* grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Grad(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Grad").front(),
                          framework::ToTypeName(param_var->Type())));
    auto* grad = ctx.Input<LoDTensor>("Grad");
    auto* mom1 = ctx.Input<LoDTensor>("Moment1");
    auto* mom2 = ctx.Input<LoDTensor>("Moment2");
    auto* lr = ctx.Input<LoDTensor>("LearningRate");

52 53
    auto* beta1_pow = ctx.Input<Tensor>("Beta1Pow");
    auto* beta2_pow = ctx.Input<Tensor>("Beta2Pow");
54 55 56 57 58 59 60

    auto* param_out = ctx.Output<LoDTensor>("ParamOut");
    auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
    auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    bool skip_update = false;
    if (ctx.HasInput("SkipUpdate")) {
      auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
      PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(SkipUpdate) size must be 1, but get %d",
                            skip_update_tensor->numel()));
      std::vector<bool> skip_update_vec;
      TensorToVector(*skip_update_tensor, ctx.device_context(),
                     &skip_update_vec);
      skip_update = skip_update_vec[0];
    }
    // skip_update=true, just copy input to output, and TensorCopy will call
    // mutable_data
    if (skip_update) {
      VLOG(4) << "Adam skip update";
      framework::TensorCopy(
          *param, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), param_out);
      framework::TensorCopy(
          *mom1, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom1_out);
      framework::TensorCopy(
          *mom2, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom2_out);
      framework::TensorCopy(
87
          *beta1_pow, beta1_pow->place(),
88 89 90
          ctx.template device_context<platform::DeviceContext>(),
          beta1_pow_out);
      framework::TensorCopy(
91
          *beta2_pow, beta2_pow->place(),
92 93 94 95 96
          ctx.template device_context<platform::DeviceContext>(),
          beta2_pow_out);
      return;
    }

97 98 99
    bool use_global_beta_pow = ctx.Attr<bool>("use_global_beta_pow");
    VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

100 101 102
    param_out->mutable_data<T>(ctx.GetPlace());
    mom1_out->mutable_data<T>(ctx.GetPlace());
    mom2_out->mutable_data<T>(ctx.GetPlace());
103

104 105 106 107
    // NOTE(zhiqiu): beta1_pow and beta2_pow may on CPU and not transform
    // place.
    LoDTensor beta1_pow_tmp;
    LoDTensor beta2_pow_tmp;
108 109
    if (beta1_pow->place() == platform::CPUPlace()) {
      T beta1 = *beta1_pow->data<T>();
110 111 112
      beta1_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&beta1_pow_tmp, beta1);
      beta1_pow = &beta1_pow_tmp;
113 114 115
    }
    if (beta2_pow->place() == platform::CPUPlace()) {
      T beta2 = *beta2_pow->data<T>();
116 117 118
      beta2_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&beta2_pow_tmp, beta2);
      beta2_pow = &beta2_pow_tmp;
119
    }
120

121 122 123 124 125 126 127 128
    const Tensor* beta1_tensor = nullptr;
    const Tensor* beta2_tensor = nullptr;
    const Tensor* epsilon_tensor = nullptr;

    Tensor beta1_tmp(framework::proto::VarType::FP32);
    Tensor beta2_tmp(framework::proto::VarType::FP32);
    Tensor epsilon_tmp(framework::proto::VarType::FP32);

129
    if (ctx.HasInput("Beta1Tensor")) {
130
      beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
131 132 133 134
      PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta1Tensor) size must be 1, but get %d",
                            beta1_tensor->numel()));
135 136 137 138 139
    } else {
      T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
      beta1_tmp.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&beta1_tmp, beta1);
      beta1_tensor = &beta1_tmp;
140
    }
141

142
    if (ctx.HasInput("Beta2Tensor")) {
143
      beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
144
      PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
145 146 147
                        platform::errors::InvalidArgument(
                            "Input(Beta2Tensor) size must be 1, but get %d",
                            beta2_tensor->numel()));
148 149 150 151 152
    } else {
      T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
      beta2_tmp.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&beta2_tmp, beta2);
      beta2_tensor = &beta2_tmp;
153
    }
154 155 156 157 158 159 160 161 162 163 164 165 166 167

    if (ctx.HasInput("EpsilonTensor")) {
      epsilon_tensor = ctx.Input<framework::Tensor>("EpsilonTensor");
      PADDLE_ENFORCE_EQ(epsilon_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(EpsilonTensor) size must be 1, but get %d",
                            epsilon_tensor->numel()));
    } else {
      T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
      epsilon_tmp.mutable_data<T>({1}, ctx.GetPlace());
      FillNpuTensorWithConstant<T>(&epsilon_tmp, epsilon);
      epsilon_tensor = &epsilon_tmp;
    }

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
            << "beta2_pow.numel() : " << beta2_pow->numel();
    VLOG(3) << "param.numel(): " << param->numel();

    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta1 pow output size should be 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta2 pow output size should be 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
186
    const auto& runner =
187 188 189
        NpuOpRunner("ApplyAdamD",
                    {
                        *param, *mom1, *mom2, *beta1_pow, *beta2_pow, *lr,
190
                        *beta1_tensor, *beta2_tensor, *epsilon_tensor, *grad,
191 192 193 194 195 196 197 198 199 200
                    },
                    {
                        *param_out, *mom1_out, *mom2_out,
                    },
                    {});
    runner.Run(stream);

    // NOTE(zhiqiu): ApplyAdamD updates params inplace, so
    // if param and param_out is not same, we need to do copy.
    if (param_out->data<T>() != param->data<T>()) {
201 202 203
      framework::TensorCopy(
          *param, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), param_out);
204 205
    }
    if (mom1_out->data<T>() != mom1->data<T>()) {
206 207 208
      framework::TensorCopy(
          *mom1, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom1_out);
209 210
    }
    if (mom2_out->data<T>() != mom2->data<T>()) {
211 212 213
      framework::TensorCopy(
          *mom2, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), mom2_out);
214
    }
215 216 217
    if (!use_global_beta_pow) {
      beta1_pow_out->mutable_data<T>(ctx.GetPlace());
      beta2_pow_out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
218
      const auto& runner_m1 =
219 220
          NpuOpRunner("Mul", {*beta1_pow, *beta1_tensor}, {*beta1_pow_out}, {});
      runner_m1.Run(stream);
L
Leo Chen 已提交
221
      const auto& runner_m2 =
222 223 224
          NpuOpRunner("Mul", {*beta2_pow, *beta2_tensor}, {*beta2_pow_out}, {});
      runner_m2.Run(stream);
    }
225 226 227
  }
};

R
Roc 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
template <typename T>
class AdamWNPUKernel : public AdamNPUKernel<platform::NPUDeviceContext, T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    VLOG(3) << "NPU AdamW Kernel";
    bool skip_update = false;
    if (ctx.HasInput("SkipUpdate")) {
      VLOG(3) << "Has SkipUpdate";
      auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
      PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(SkipUpdate) size must be 1, but get %d",
                            skip_update_tensor->numel()));
      std::vector<bool> skip_update_vec;
      TensorToVector(*skip_update_tensor, ctx.device_context(),
                     &skip_update_vec);
      skip_update = skip_update_vec[0];
    }
    VLOG(3) << "Skip update" << skip_update;
    bool with_decay = ctx.Attr<bool>("with_decay");
    if (!skip_update && with_decay) {
      float coeff = ctx.Attr<float>("coeff");
      auto* lr = ctx.Input<LoDTensor>("LearningRate");

      auto place = ctx.GetPlace();

      auto stream =
          ctx.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();

      Tensor one(framework::proto::VarType::FP32);
      Tensor decay(framework::proto::VarType::FP32);
      Tensor tmp(framework::proto::VarType::FP32);

      tmp.mutable_data<float>({1}, place);
      one.mutable_data<float>({1}, place);
      decay.mutable_data<float>({1}, place);

      FillNpuTensorWithConstant<float>(&one, 1.0f);
      framework::NPUAttributeMap attr_input = {{"value", coeff}};

      const auto& runner1 = NpuOpRunner("Muls", {*lr}, {tmp}, attr_input);
      runner1.Run(stream);

      const auto& runner2 = NpuOpRunner("Sub", {one, tmp}, {decay}, {});
      runner2.Run(stream);

      if (ctx.HasInput("MasterParam")) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Master Parma is not supported on npu"));
      } else {
        auto* param_out = ctx.Output<LoDTensor>("ParamOut");
        param_out->mutable_data<T>(ctx.GetPlace());

        const auto* param_var = ctx.InputVar("Param");
        PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                          platform::errors::InvalidArgument(
                              "The Var(%s)'s type should be LoDTensor, "
                              "but the received is %s",
                              ctx.InputNames("Param").front(),
                              framework::ToTypeName(param_var->Type())));
        auto* param = ctx.Input<LoDTensor>("Param");

        const auto& runner =
            NpuOpRunner("Mul", {*param, decay},
                        {*const_cast<framework::LoDTensor*>(param)}, {});
        runner.Run(stream);
      }
    }
    AdamNPUKernel<platform::NPUDeviceContext, T>::Compute(ctx);
  }
};

301 302 303 304 305 306 307 308 309
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    adam, ops::AdamNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::AdamNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);
R
Roc 已提交
310 311 312

REGISTER_OP_NPU_KERNEL(adamw, ops::AdamWNPUKernel<float>,
                       ops::AdamWNPUKernel<paddle::platform::float16>);