common.py 8.2 KB
Newer Older
Y
Yi Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import os
Y
Yi Liu 已提交
17 18 19 20 21

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready

22 23
__all__ = []

Y
Yi Liu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
OpRole = core.op_proto_and_checker_maker.OpRole

OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()


def is_update_op(op):
    return 'Param' in op.input_names and 'Grad' in op.input_names and \
            "LearningRate" in op.input_names


def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


def is_backward_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Backward)


def is_optimizer_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


class CollectiveHelper(object):
53
    def __init__(self, role_maker, nrings=1, wait_port=True):
Y
Yi Liu 已提交
54 55 56 57 58 59 60 61 62
        self.nrings = nrings
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self, startup_program=None):
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

63 64
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
Y
Yi Liu 已提交
65 66 67
        for ring_id in range(self.nrings):
            self._init_communicator(
                self.startup_program, current_endpoint, endpoints,
68
                self.role_maker._worker_index(), ring_id, self.wait_port)
Y
Yi Liu 已提交
69 70
        self._broadcast_params()

71 72 73 74 75 76 77 78 79
    def _init_communicator(self,
                           program,
                           current_endpoint,
                           endpoints,
                           rank,
                           ring_id,
                           wait_port,
                           global_ring_id=None,
                           sync=True):
Y
Yi Liu 已提交
80 81 82
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
83

Y
Yi Liu 已提交
84 85 86
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        def _add_sync_by_allreduce(block):
            sync_var = block.create_var(
                name=unique_name.generate('sync_var'),
                dtype=core.VarDesc.VarType.INT32,
                persistable=False,
                stop_gradient=True)
            block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [sync_var]},
                attrs={
                    'shape': [1],
                    'dtype': sync_var.dtype,
                    'value': 1,
                    'force_cpu': False,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_allreduce_sum',
                inputs={'X': [sync_var]},
                outputs={'Out': [sync_var]},
                attrs={
                    'ring_id': global_ring_id,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
113 114 115 116 117
            block.append_op(
                type='c_sync_calc_stream',
                inputs={'X': sync_var},
                outputs={'Out': sync_var},
                attrs={OP_ROLE_KEY: OpRole.Forward})
118

Y
Yi Liu 已提交
119
        block = program.global_block()
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        if core.is_compiled_with_cuda():
            comm_id_var = block.create_var(
                name=unique_name.generate('nccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_nccl_id',
                inputs={},
                outputs={'Out': comm_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': comm_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward
                })
        elif core.is_compiled_with_xpu():
            comm_id_var = block.create_var(
                name=unique_name.generate('bkcl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            block.append_op(
                type='c_gen_bkcl_id',
                inputs={},
                outputs={'Out': comm_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init',
                inputs={'X': comm_id_var},
                outputs={},
                attrs={
                    'nranks': nranks,
                    'rank': rank,
                    'ring_id': ring_id,
                    OP_ROLE_KEY: OpRole.Forward
                })
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        elif core.is_compiled_with_npu():
            hccl_id_var = block.create_var(
                name=unique_name.generate('hccl_id'),
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            endpoint_to_index_map = {e: idx for idx, e in enumerate(endpoints)}
            block.append_op(
                type='c_gen_hccl_id',
                inputs={},
                outputs={'Out': hccl_id_var},
                attrs={
                    'rank': rank,
                    'endpoint': current_endpoint,
                    'other_endpoints': other_endpoints,
                    OP_ROLE_KEY: OpRole.Forward
                })
            block.append_op(
                type='c_comm_init_hccl',
                inputs={'X': hccl_id_var},
                outputs={},
                attrs={
                    'rank': rank,
                    'ring_id': ring_id,
                    'device_id': int(os.getenv("FLAGS_selected_npus")),
                    'rank_ids': nranks,
                    OP_ROLE_KEY: OpRole.Forward
                })
197 198 199 200
        else:
            raise ValueError(
                "comm_id must be generated in paddlepaddle-xpu or paddlepaddle-xpu."
            )
201
        if sync: _add_sync_by_allreduce(block)
Y
Yi Liu 已提交
202

203 204 205 206 207 208
    def _wait(self, current_endpoint, endpoints):
        assert (self.wait_port)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        wait_server_ready(other_endpoints)

Y
Yi Liu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def _broadcast_params(self):
        block = self.startup_program.global_block()
        ring_id = -1
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            ring_id = (ring_id + 1) % self.nrings
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       OP_ROLE_KEY: OpRole.Forward})