test_sum_op.py 24.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import unittest
17
import tempfile
18 19
import numpy as np
from op_test import OpTest
20
import paddle
21
from paddle import enable_static
22
import paddle.fluid as fluid
T
tangwei12 已提交
23 24
import paddle.fluid.core as core
from paddle.fluid.op import Operator
25 26 27 28 29
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    convert_float_to_uint16,
    convert_uint16_to_float,
)
30
from paddle.fluid.framework import _test_eager_guard
31
import paddle.inference as paddle_infer
32 33 34
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
35 36 37 38 39


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
40
        self.init_kernel_type()
41 42
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
43 44 45
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
46
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
47 48
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
49
        self.attrs = {'use_mkldnn': self.use_mkldnn}
50

C
chengduo 已提交
51
    def init_kernel_type(self):
52
        self.dtype = np.float64
C
chengduo 已提交
53

54
    def test_check_output(self):
Q
qijun 已提交
55
        self.check_output()
56 57

    def test_check_grad(self):
Q
qijun 已提交
58
        self.check_grad(['x0'], 'Out')
59 60


61
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
62
    def setUp(self):
Q
qiaolongfei 已提交
63 64 65
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
66
        self.dtype = np.float64
C
chengduo 已提交
67
        self.init_kernel_type()
Q
qiaolongfei 已提交
68

C
chengduo 已提交
69
    def check_with_place(self, place, inplace):
70 71 72 73 74 75 76 77 78 79 80 81
        self.check_input_and_optput(
            core.Scope(), place, inplace, True, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, False
        )
T
tangwei12 已提交
82

C
chengduo 已提交
83
    def init_kernel_type(self):
C
chengduo 已提交
84
        pass
C
chengduo 已提交
85

C
chengduo 已提交
86 87 88 89
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
90 91
        return array

92 93 94 95 96 97 98 99 100
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
T
tangwei12 已提交
101 102 103 104

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
105 106

        # create Out Variable
Q
Qiao Longfei 已提交
107 108 109 110 111
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
112 113

        # create and run sum operator
Q
Qiao Longfei 已提交
114
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
115 116
        sum_op.run(scope, place)

T
tangwei12 已提交
117
        has_data_w_num = 0
Q
qiaolongfei 已提交
118 119
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
120
                has_data_w_num += 1
T
tangwei12 已提交
121

Q
qiaolongfei 已提交
122 123
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
124 125
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
126 127
                self._get_array(self.rows, self.row_numel) * has_data_w_num,
            )
Q
qiaolongfei 已提交
128 129
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
130

Q
qiaolongfei 已提交
131
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
132
        # create and initialize W Variable
Q
qiaolongfei 已提交
133 134
        if has_data:
            rows = self.rows
T
tangwei12 已提交
135 136 137 138 139
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
140
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
141
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
142
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
143 144 145 146 147 148 149
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
150 151
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
152
        for place in places:
Q
Qiao Longfei 已提交
153 154
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
155 156


157 158 159 160 161
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
    def init_kernel_type(self):
        self.dtype = np.int32


162 163 164
@unittest.skipIf(
    not core.supports_bfloat16(), 'place does not support BF16 evaluation'
)
165 166 167 168 169 170 171 172
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
173 174 175
        self.data = np.random.random((len(self.rows), self.row_numel)).astype(
            np.float32
        )
176 177 178 179 180 181 182

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

183 184 185 186 187 188 189 190 191
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
217 218 219 220 221 222
            ref_fp32 = (
                convert_uint16_to_float(
                    self._get_array(self.rows, self.row_numel)
                )
                * has_data_w_num
            )
223 224 225 226 227 228 229 230 231
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
232 233 234 235 236
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
237 238 239 240 241
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
242
        self.dtype = np.float64
C
chengduo 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
267 268
        np.testing.assert_array_equal(
            out_t,
269 270 271
            self._get_array([i for i in range(self.height)], self.row_numel)
            * np.tile(np.array(result).reshape(self.height, 1), self.row_numel),
        )
C
chengduo 已提交
272 273 274 275

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
276 277 278
        w_array = self._get_array(
            [i for i in range(self.height)], self.row_numel
        )
C
chengduo 已提交
279 280 281 282
        w_tensor.set(w_array, place)
        return var


283 284 285 286
# ----------- test fp16 -----------
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
287 288 289 290 291
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
292 293 294
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
295 296 297 298

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
299 300 301
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
302 303


C
chengduo 已提交
304
def create_test_sum_fp16_class(parent):
305 306 307
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
308 309 310
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
311

C
chengduo 已提交
312
        def test_w_is_selected_rows(self):
C
chengduo 已提交
313 314 315 316 317
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
318 319 320 321 322
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


323
# ----------- test bf16 -----------
324 325 326 327 328 329 330 331 332
class TestSumBF16Op(OpTest):
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
333 334 335 336 337
            "X": [
                ("x0", convert_float_to_uint16(x0)),
                ("x1", convert_float_to_uint16(x1)),
                ("x2", convert_float_to_uint16(x2)),
            ]
338 339 340 341 342 343 344 345 346 347 348 349 350
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
351
class API_Test_Add_n(unittest.TestCase):
352 353
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
354 355 356 357 358 359
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5
            )
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3
            )
360 361
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
362
            sum_value = paddle.add_n([input0, input1])
363 364 365
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
366 367 368 369 370 371 372 373 374
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
375

376
    def test_dygraph_api(self):
377 378 379 380 381 382 383 384 385
        with fluid.dygraph.guard():
            with _test_eager_guard():
                input0 = paddle.ones(shape=[2, 3], dtype='float32')
                input1 = paddle.ones(shape=[2, 3], dtype='float32')
                input0.stop_gradient = False
                input1.stop_gradient = False
                expected_result = np.empty((2, 3))
                expected_result.fill(2)
                sum_value = paddle.add_n([input0, input1])
386 387 388
                self.assertEqual(
                    (sum_value.numpy() == expected_result).all(), True
                )
389 390 391 392 393

                expected_grad_result = np.empty((2, 3))
                expected_grad_result.fill(1)
                sum_value.backward()
                self.assertEqual(
394 395
                    (input0.grad.numpy() == expected_grad_result).all(), True
                )
396
                self.assertEqual(
397 398
                    (input1.grad.numpy() == expected_grad_result).all(), True
                )
399

W
Weilong Wu 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

415
            expected_out = np.array([[10.0, 12.0, 14.0], [16.0, 18.0, 20.0]])
W
Weilong Wu 已提交
416 417 418
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

419 420 421
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
422

423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sum([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sum([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sum(data1)

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
481 482 483 484
class TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_empty_list_input():
            with fluid.dygraph.guard():
485
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
486 487 488

        def test_list_of_none_input():
            with fluid.dygraph.guard():
489
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
490 491 492 493 494

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
495 496
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
497

498 499 500 501 502 503 504

class TestReduceOPTensorAxisBase(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
505 506 507 508 509
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
528 529
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out
        )
530 531 532 533 534 535 536 537 538
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
539 540 541
            x = paddle.static.data(
                shape=self.x.shape, name='x', dtype='float32'
            )
542 543 544 545 546 547 548 549 550 551 552 553 554
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
555

556
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
557
            sgd.minimize(paddle.mean(out))
558 559
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
560 561 562
            static_out = exe.run(
                feed={'x': self.x.numpy().astype('float32')}, fetch_list=[out]
            )
563 564 565

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
566 567 568
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
595
            paddle.to_tensor([2], 'int64'),
596 597 598
        ]


599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
class TestAddNDoubleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

617 618 619 620 621 622 623
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
624 625
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
626 627
            self.add_n_wrapper,
            [data1, data2],
628 629
            out,
            x_init=[data1_arr, data2_arr],
630 631
            place=place,
        )
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAddNTripleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

660 661 662 663 664 665 666
        gradient_checker.triple_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
667 668
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(
669 670
            self.add_n_wrapper,
            [data1, data2],
671 672
            out,
            x_init=[data1_arr, data2_arr],
673 674
            place=place,
        )
675 676 677 678 679 680 681 682 683 684

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
class TestSumDoubleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

700 701 702
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
703
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
704 705 706
        gradient_checker.double_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSumTripleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

732 733 734
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
735
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
736 737 738
        gradient_checker.triple_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
739 740 741 742 743 744 745 746 747 748

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
749
if __name__ == "__main__":
750
    enable_static()
751
    unittest.main()