test_one_hot_op.py 6.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang yaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
from op_test import OpTest
18
import paddle
19 20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import Program, program_guard
Y
Yang yaming 已提交
22 23 24 25 26 27


class TestOneHotOp(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
28
        depth_np = np.array(10).astype('int32')
Y
Yang yaming 已提交
29
        dimension = 12
30
        x_lod = [[4, 1, 3, 3]]
31
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
32 33
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

34 35 36
        out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype(
            'float32'
        )
37 38 39 40 41 42 43 44 45

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
46
        self.check_output(check_dygraph=False)
47 48 49 50 51 52 53 54 55 56


class TestOneHotOp_attr(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
57

58 59 60
        out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype(
            'float32'
        )
Y
Yang yaming 已提交
61

62
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
63 64 65
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
66
        self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
Y
Yang yaming 已提交
67 68 69
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
70
        self.check_output(check_dygraph=False)
Y
Yang yaming 已提交
71 72 73


class TestOneHotOp_default_dtype(OpTest):
74 75 76 77 78 79 80 81 82
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        depth_np = np.array(10).astype('int32')
        dimension = 12
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

83 84 85
        out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype(
            'float32'
        )
86 87 88 89 90 91 92 93 94

        for i in range(np.product(x.shape)):
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
        self.attrs = {}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
95
        self.check_output(check_dygraph=False)
96 97 98


class TestOneHotOp_default_dtype_attr(OpTest):
Y
Yang yaming 已提交
99 100 101 102
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        dimension = 12
103
        x_lod = [[4, 1, 3, 3]]
104
        x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
105
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
106

107 108 109
        out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype(
            'float32'
        )
Y
Yang yaming 已提交
110

111
        for i in range(np.product(x.shape)):
Y
Yang yaming 已提交
112 113 114 115 116 117 118
            out[i, x[i]] = 1.0

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
119
        self.check_output(check_dygraph=False)
Y
Yang yaming 已提交
120 121


122 123 124 125 126 127 128 129
class TestOneHotOp_out_of_range(OpTest):
    def setUp(self):
        self.op_type = 'one_hot'
        depth = 10
        x_lod = [[4, 1, 3, 3]]
        x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
        x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

130 131 132
        out = np.zeros(shape=(np.product(x.shape[:-1]), depth)).astype(
            'float32'
        )
133 134 135 136 137 138

        self.inputs = {'X': (x, x_lod)}
        self.attrs = {'depth': depth, 'allow_out_of_range': True}
        self.outputs = {'Out': (out, x_lod)}

    def test_check_output(self):
H
hong 已提交
139
        self.check_output(check_dygraph=False)
140 141


142
class TestOneHotOp_exception(unittest.TestCase):
Y
Yang yaming 已提交
143 144 145 146 147 148
    def setUp(self):
        self.op_type = 'one_hot'
        self.depth = 10
        self.place = core.CPUPlace()
        self.dimension = 12
        self.x = core.LoDTensor()
149
        x_lod = [[4, 1, 3, 3]]
150
        data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
151
        data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
Y
Yang yaming 已提交
152
        self.x.set(data, self.place)
153
        self.x.set_recursive_sequence_lengths(x_lod)
Y
Yang yaming 已提交
154 155 156 157

    def test_check_output(self):
        program = Program()
        with program_guard(program):
158 159 160
            x = fluid.layers.data(
                name='x', shape=[self.dimension], dtype='float32', lod_level=1
            )
Y
Yang yaming 已提交
161
            block = program.current_block()
162 163 164 165 166 167 168 169 170 171 172
            one_hot_out = block.create_var(
                name="one_hot_out",
                type=core.VarDesc.VarType.LOD_TENSOR,
                dtype='float32',
            )
            block.append_op(
                type='one_hot',
                inputs={'X': x},
                attrs={'depth': self.depth},
                outputs={'Out': one_hot_out},
            )
Y
Yang yaming 已提交
173 174 175
            exe = fluid.Executor(self.place)

            def run():
176 177 178 179 180
                exe.run(
                    feed={'x': self.x},
                    fetch_list=[one_hot_out],
                    return_numpy=False,
                )
Y
Yang yaming 已提交
181

182
            self.assertRaises(ValueError, run)
Y
Yang yaming 已提交
183 184


185 186 187 188 189 190 191
class TestOneHotOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input must be Variable
            in_w = np.random.random((4, 1)).astype("int32")
            self.assertRaises(TypeError, fluid.layers.one_hot, in_w)
            # the input must be int32 or int 64
192 193 194 195 196 197
            in_w2 = fluid.layers.data(
                name="in_w2",
                shape=[4, 1],
                append_batch_size=False,
                dtype="float32",
            )
198 199
            self.assertRaises(TypeError, fluid.layers.one_hot, in_w2)
            # the depth must be int, long or Variable
200 201 202 203 204 205
            in_r = fluid.layers.data(
                name="in_r",
                shape=[4, 1],
                append_batch_size=False,
                dtype="int32",
            )
206 207 208 209 210
            depth_w = np.array([4])
            self.assertRaises(TypeError, fluid.layers.one_hot, in_r, 4.1)
            self.assertRaises(TypeError, fluid.layers.one_hot, in_r, depth_w)


Y
Yang yaming 已提交
211
if __name__ == '__main__':
212
    paddle.enable_static()
Y
Yang yaming 已提交
213
    unittest.main()