test_nce.py 12.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15
import numpy as np
16
import unittest
17
import paddle
18 19
import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
20
from paddle.fluid import Program, program_guard
21

22
from op_test import OpTest
W
wanghaoshuang 已提交
23 24


25 26 27
def nce(
    input, weight, bias, sample_weight, labels, num_classes, num_sample_class
):
W
wanghaoshuang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
    samples = []
    sample_labels = []
    batch_size = input.shape[0]
    num_true_class = labels.shape[1]
    for i in range(batch_size):
        w = 1 if sample_weight is None else sample_weight[i]
        for label in labels[i]:
            samples.append((i, label, True, w))
            sample_labels.append(label)
        for num in range(num_sample_class):
            samples.append((i, num, False, w))
            sample_labels.append(num)
    # forward bias
W
wanghaoshuang 已提交
41
    sample_out = np.zeros(len(samples)).astype(np.float32)
W
wanghaoshuang 已提交
42 43
    if bias is not None:
        for i in range(len(samples)):
W
wanghaoshuang 已提交
44
            sample_out[i] = bias[samples[i][1]]
W
wanghaoshuang 已提交
45 46
    # forward weight
    for i in range(len(samples)):
W
wanghaoshuang 已提交
47
        sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
W
wanghaoshuang 已提交
48 49

    # forward activation
W
wanghaoshuang 已提交
50
    sample_out = 1.0 / (1.0 + np.exp(-sample_out))
W
wanghaoshuang 已提交
51 52 53 54
    # forward cost
    out = np.zeros(batch_size).astype(np.float32)
    b = 1.0 / num_classes * num_sample_class
    for i in range(len(samples)):
W
wanghaoshuang 已提交
55
        o = sample_out[i]
W
wanghaoshuang 已提交
56 57
        cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
        out[samples[i][0]] += cost * samples[i][3]
58 59 60 61 62 63 64 65 66
    return (
        out[:, np.newaxis],
        np.array(sample_out).reshape(
            batch_size, num_sample_class + num_true_class
        ),
        np.array(sample_labels).reshape(
            batch_size, num_sample_class + num_true_class
        ),
    )
W
wanghaoshuang 已提交
67 68 69


class TestNCE(OpTest):
70 71 72 73 74 75 76 77 78
    def generate_data(
        self,
        dim,
        batch_size,
        num_classes,
        num_true_class,
        num_neg_samples,
        is_sparse,
    ):
W
wanghaoshuang 已提交
79 80 81 82
        input = np.random.randn(batch_size, dim).astype(np.float32)
        weight = np.random.randn(num_classes, dim).astype(np.float32)
        bias = np.random.randn(num_classes).astype(np.float32)
        sample_weight = np.random.randn(batch_size).astype(np.float32)
83 84 85
        labels = np.random.randint(
            0, num_classes, (batch_size, num_true_class)
        ).astype("int64")
W
wanghaoshuang 已提交
86
        self.attrs = {
W
wanghaoshuang 已提交
87 88
            'num_total_classes': num_classes,
            'num_neg_samples': num_neg_samples,
89 90
            'custom_neg_classes': list(range(num_neg_samples)),
            'seed': 0,
91
            'sampler': 0,
P
pangyoki 已提交
92
            'is_sparse': is_sparse,
93
            'is_test': self.is_test,
W
wanghaoshuang 已提交
94 95
        }
        self.inputs = {
W
wanghaoshuang 已提交
96
            'Input': input,
W
wanghaoshuang 已提交
97
            'Label': labels,
W
wanghaoshuang 已提交
98 99
            'Weight': weight,
            'Bias': bias,
100
            'SampleWeight': sample_weight,
W
wanghaoshuang 已提交
101 102
        }

P
pangyoki 已提交
103 104 105
    def set_is_test(self):
        self.is_test = False

W
wanghaoshuang 已提交
106
    def set_data(self):
Z
zhupengyang 已提交
107
        self.generate_data(5, 25, 100, 1, 2, False)
W
wanghaoshuang 已提交
108 109

    def compute(self):
110 111 112 113 114 115 116 117 118
        out = nce(
            self.inputs['Input'],
            self.inputs['Weight'],
            self.inputs['Bias'],
            self.inputs['SampleWeight'],
            self.inputs['Label'],
            self.attrs['num_total_classes'],
            self.attrs['num_neg_samples'],
        )
P
pangyoki 已提交
119 120 121 122 123 124
        if self.is_test:
            self.outputs = {'Cost': out[0]}
        else:
            self.outputs = {
                'Cost': out[0],
                'SampleLogits': out[1],
125
                'SampleLabels': out[2],
P
pangyoki 已提交
126
            }
W
wanghaoshuang 已提交
127 128 129

    def setUp(self):
        self.op_type = 'nce'
P
pangyoki 已提交
130
        self.set_is_test()
W
wanghaoshuang 已提交
131 132 133 134 135 136 137
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
138 139 140
        self.check_grad(
            ["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02
        )
W
wanghaoshuang 已提交
141 142


143
class TestNCECase1Tensor(TestNCE):
W
wanghaoshuang 已提交
144
    def set_data(self):
Z
zhupengyang 已提交
145
        self.generate_data(10, 20, 100, 2, 5, False)
146 147


P
pangyoki 已提交
148 149 150 151 152 153 154 155 156
class TestNCETensorIsTest(TestNCE):
    # if is_test = True, there's no need to calculate grad
    def set_is_test(self):
        self.is_test = True

    def test_check_grad(self):
        pass


157 158 159 160 161 162 163 164 165 166 167 168
class TestNCECase1SelectedRows(unittest.TestCase):
    def setUp(self):
        self.base_lr = 0.0001
        self.batch_size = 8

    @staticmethod
    def get_place():
        place = fluid.core.CPUPlace()
        return place

    @staticmethod
    def get_train_data(batch_size):
T
tianshuo78520a 已提交
169
        batches = []
170 171 172
        for i in range(batch_size):
            input = np.random.randn(batch_size, 10).astype(np.float32)
            labels = np.random.randint(0, 20, (batch_size, 1))
T
tianshuo78520a 已提交
173 174
            batches.append([input, labels])
        return batches
175 176 177 178 179 180

    def get_optimizer(self):
        # SGD optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
        return optimizer

181 182 183 184 185 186 187 188
    def train_network(
        self,
        num_total_classes,
        num_neg_samples,
        sampler,
        custom_dist,
        is_sparse,
    ):
189 190 191
        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='nce_w',
                initializer=initializer.ConstantInitializer(),
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 1],
                dtype='float32',
                name='nce_b',
                initializer=initializer.ConstantInitializer(),
            )
        )

        cost = fluid.layers.nce(
            input=input,
            label=label,
            num_total_classes=num_total_classes,
            sampler=sampler,
            custom_dist=custom_dist,
            sample_weight=None,
            param_attr='nce_w',
            bias_attr='nce_b',
            seed=1,
            num_neg_samples=num_neg_samples,
            is_sparse=is_sparse,
        )
226
        avg_cost = paddle.mean(cost)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        # optimizer
        optimizer = self.get_optimizer()
        optimizer.minimize(avg_cost)

        return [avg_cost, [input, label]]

    def test_input_is_selected_rows(self):
        place = self.get_place()
        exe = fluid.Executor(place)

        data = self.get_train_data(self.batch_size)
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        rets = []
        # for dense
        dense_scope = fluid.core.Scope()
        dense_startup_program = fluid.framework.Program()
        dense_train_program = fluid.framework.Program()
        with fluid.scope_guard(dense_scope):
246 247 248 249 250 251
            with fluid.program_guard(
                dense_train_program, dense_startup_program
            ):
                cost, feeds = self.train_network(
                    20, 5, "custom_dist", nid_freq_arr.tolist(), False
                )
252 253
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(dense_startup_program)
254 255 256 257 258
                loss_val = exe.run(
                    dense_train_program,
                    feed=feeder.feed(data),
                    fetch_list=[cost.name],
                )
259 260 261 262 263 264 265
                rets.append(np.mean(loss_val))

        # for sparse
        sparse_scope = fluid.core.Scope()
        sparse_startup_program = fluid.framework.Program()
        sparse_train_program = fluid.framework.Program()
        with fluid.scope_guard(sparse_scope):
266 267 268 269 270 271
            with fluid.program_guard(
                sparse_train_program, sparse_startup_program
            ):
                cost, feeds = self.train_network(
                    20, 5, "custom_dist", nid_freq_arr.tolist(), True
                )
272 273
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(sparse_startup_program)
274 275 276 277 278
                loss_val = exe.run(
                    sparse_train_program,
                    feed=feeder.feed(data),
                    fetch_list=[cost.name],
                )
279 280 281
                rets.append(np.mean(loss_val))

        self.assertEqual(rets[0], rets[1])
W
wanghaoshuang 已提交
282 283


284
class TestNCE_OpError(unittest.TestCase):
285 286
    def test_errors(self):
        with program_guard(Program(), Program()):
287 288 289 290 291 292
            input1 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace()
            )
            label1 = fluid.layers.data(
                name='label1', shape=[-1, 4], dtype="int64"
            )
293 294 295
            # the input(input) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input1, label1, 5)

296 297 298 299 300 301
            input2 = fluid.layers.data(
                name='input2', shape=[-1, 4], dtype="float32"
            )
            label2 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace()
            )
302 303 304
            # the input(label) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input2, label2, 5)

305 306 307 308 309 310
            input3 = fluid.layers.data(
                name='input3', shape=[-1, 4], dtype="float16"
            )
            label3 = fluid.layers.data(
                name='label3', shape=[-1, 1], dtype="int64"
            )
311 312 313
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, fluid.layers.nce, input3, label3, 5)

314 315 316 317 318 319
            input4 = fluid.layers.data(
                name='input4', shape=[-1, 4], dtype="float32"
            )
            label4 = fluid.layers.data(
                name='label4', shape=[-1, 1], dtype="int32"
            )
320 321 322 323
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, fluid.layers.nce, input4, label4, 5)


324 325 326 327
class TestDygraphNCE_OpError(unittest.TestCase):
    def test_NCE_errors(self):
        with program_guard(Program(), Program()):
            nce = fluid.NCE(20, 5)
328 329 330 331 332 333
            input1 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace()
            )
            label1 = fluid.layers.data(
                name='label1', shape=[-1, 4], dtype="int64"
            )
334 335 336
            # the input(input) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input1, label1)

337 338 339 340 341 342
            input2 = fluid.layers.data(
                name='input2', shape=[-1, 4], dtype="float32"
            )
            label2 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace()
            )
343 344 345
            # the input(label) of NCE layer must be Variable.
            self.assertRaises(TypeError, nce, input2, label2)

346 347 348 349 350 351
            input3 = fluid.layers.data(
                name='input3', shape=[-1, 4], dtype="float16"
            )
            label3 = fluid.layers.data(
                name='label3', shape=[-1, 1], dtype="int64"
            )
352 353 354
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, nce, input3, label3)

355 356 357 358 359 360
            input4 = fluid.layers.data(
                name='input4', shape=[-1, 4], dtype="float32"
            )
            label4 = fluid.layers.data(
                name='label4', shape=[-1, 1], dtype="int32"
            )
361 362 363
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, nce, input4, label4)

364 365 366 367 368 369
            input5 = fluid.layers.data(
                name='input5', shape=[-1, 4], dtype="float32"
            )
            label5 = fluid.layers.data(
                name='label5', shape=[-1, 1], dtype="int64"
            )
370
            sample_weight = fluid.create_lod_tensor(
371 372
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace()
            )
373 374 375 376
            # the sample_weight of nce must be Variable or None.
            self.assertRaises(TypeError, nce, input5, label5, sample_weight)


W
wanghaoshuang 已提交
377 378
if __name__ == '__main__':
    unittest.main()