test_machine_translation.py 11.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Y
Yang Yu 已提交
15
import contextlib
D
dzhwinter 已提交
16

Y
Yan Chunwei 已提交
17
import numpy as np
18
import paddle
19 20 21 22
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
Yang Yu 已提交
23
import unittest
武毅 已提交
24
import os
Y
Yan Chunwei 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yan Chunwei 已提交
28 29
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
Q
Qiao Longfei 已提交
30 31
hidden_dim = 32
word_dim = 16
Q
Qiao Longfei 已提交
32 33
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
34 35
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
36
beam_size = 2
Y
Yan Chunwei 已提交
37

Q
Qiao Longfei 已提交
38 39 40
decoder_size = hidden_dim


Y
Yang Yu 已提交
41
def encoder(is_sparse):
Q
Qiao Longfei 已提交
42
    # encoder
43 44 45 46 47 48 49 50 51 52
    src_word_id = pd.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1
    )
    src_embedding = pd.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr=fluid.ParamAttr(name='vemb'),
    )
Q
Qiao Longfei 已提交
53

Q
Qiao Longfei 已提交
54 55 56 57 58
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
59

Y
Yang Yu 已提交
60
def decoder_train(context, is_sparse):
Q
Qiao Longfei 已提交
61
    # decoder
62 63 64 65 66 67 68 69 70 71
    trg_language_word = pd.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1
    )
    trg_embedding = pd.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr=fluid.ParamAttr(name='vemb'),
    )
Q
Qiao Longfei 已提交
72

Q
Qiao Longfei 已提交
73
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
74 75
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
76
        pre_state = rnn.memory(init=context)
77 78 79
        current_state = pd.fc(
            input=[current_word, pre_state], size=decoder_size, act='tanh'
        )
Q
Qiao Longfei 已提交
80

81 82 83
        current_score = pd.fc(
            input=current_state, size=target_dict_dim, act='softmax'
        )
Q
Qiao Longfei 已提交
84 85
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
86 87

    return rnn()
Y
Yan Chunwei 已提交
88 89


Y
Yang Yu 已提交
90
def decoder_decode(context, is_sparse):
Q
Qiao Longfei 已提交
91 92
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
Y
Yang Yu 已提交
93
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
Q
Qiao Longfei 已提交
94 95 96 97 98 99 100 101 102 103

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
104 105 106
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2
    )
Q
Qiao Longfei 已提交
107 108 109 110 111 112 113 114 115 116 117 118

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

119
        # expand the recursive_sequence_lengths of pre_state to be the same with pre_score
Q
Qiao Longfei 已提交
120 121
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

122 123 124 125 126 127
        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=is_sparse,
        )
Q
Qiao Longfei 已提交
128 129

        # use rnn unit to update rnn
130 131 132 133 134
        current_state = pd.fc(
            input=[pre_state_expanded, pre_ids_emb],
            size=decoder_size,
            act='tanh',
        )
135
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
Q
Qiao Longfei 已提交
136
        # use score to do beam search
137 138 139
        current_score = pd.fc(
            input=current_state_with_lod, size=target_dict_dim, act='softmax'
        )
140 141
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
142 143 144 145 146 147 148 149 150 151 152 153
        accu_scores = pd.elementwise_add(
            x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0
        )
        selected_ids, selected_scores = pd.beam_search(
            pre_ids,
            pre_score,
            topk_indices,
            accu_scores,
            beam_size,
            end_id=10,
            level=0,
        )
Q
Qiao Longfei 已提交
154 155 156 157 158 159 160 161

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

162 163 164 165 166
        # update the break condition: up to the max length or all candidates of
        # source sentences have ended.
        length_cond = pd.less_than(x=counter, y=array_len)
        finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
        pd.logical_and(x=length_cond, y=finish_cond, out=cond)
Q
Qiao Longfei 已提交
167 168

    translation_ids, translation_scores = pd.beam_search_decode(
169 170
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10
    )
Q
Qiao Longfei 已提交
171 172 173 174 175 176

    # return init_ids, init_scores

    return translation_ids, translation_scores


武毅 已提交
177
def train_main(use_cuda, is_sparse, is_local=True):
Y
Yang Yu 已提交
178 179 180 181 182 183
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    rnn_out = decoder_train(context, is_sparse)
184 185 186
    label = pd.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1
    )
Q
Qiao Longfei 已提交
187
    cost = pd.cross_entropy(input=rnn_out, label=label)
Y
Yu Yang 已提交
188
    avg_cost = pd.mean(cost)
Q
Qiao Longfei 已提交
189

190 191 192
    optimizer = fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
193 194 195
            regularization_coeff=0.1
        ),
    )
W
Wu Yi 已提交
196
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
197

198 199 200 201 202 203
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000
        ),
        batch_size=batch_size,
    )
Y
Yan Chunwei 已提交
204

205
    feed_order = [
206 207 208
        'src_word_id',
        'target_language_word',
        'target_language_next_word',
209 210
    ]

Y
Yan Chunwei 已提交
211 212
    exe = Executor(place)

武毅 已提交
213 214 215
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

216 217 218 219 220
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
221
        batch_id = 0
222
        for pass_id in range(1):
武毅 已提交
223
            for data in train_data():
224 225 226
                outs = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost]
                )
武毅 已提交
227
                avg_cost_val = np.array(outs[0])
228 229 230 231 232 233 234 235
                print(
                    'pass_id='
                    + str(pass_id)
                    + ' batch='
                    + str(batch_id)
                    + " avg_cost="
                    + str(avg_cost_val)
                )
武毅 已提交
236 237 238 239 240 241 242
                if batch_id > 3:
                    break
                batch_id += 1

    if is_local:
        train_loop(framework.default_main_program())
    else:
G
gongweibao 已提交
243 244
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
245 246 247 248
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
249
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
250
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
251 252
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
253
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
254
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
255 256
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
257 258 259
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
260 261 262 263
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yan Chunwei 已提交
264 265


Y
Yang Yu 已提交
266 267 268 269 270 271 272
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decoder_decode(context, is_sparse)
Q
Qiao Longfei 已提交
273 274 275 276 277

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
278 279 280
    init_scores_data = np.array(
        [1.0 for _ in range(batch_size)], dtype='float32'
    )
Q
Qiao Longfei 已提交
281 282
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
283 284
    init_recursive_seq_lens = [1] * batch_size
    init_recursive_seq_lens = [init_recursive_seq_lens, init_recursive_seq_lens]
Q
Qiao Longfei 已提交
285

286 287 288 289 290 291
    init_ids = fluid.create_lod_tensor(
        init_ids_data, init_recursive_seq_lens, place
    )
    init_scores = fluid.create_lod_tensor(
        init_scores_data, init_recursive_seq_lens, place
    )
292

293 294 295 296 297 298
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000
        ),
        batch_size=batch_size,
    )
Q
Qiao Longfei 已提交
299

300 301 302 303 304 305 306 307
    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for data in train_data():
308
        feed_dict = feeder.feed([[x[0]] for x in data])
309 310
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores
Q
Qiao Longfei 已提交
311 312 313

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
314
            feed=feed_dict,
Q
Qiao Longfei 已提交
315
            fetch_list=[translation_ids, translation_scores],
316 317
            return_numpy=False,
        )
318
        print(result_ids.recursive_sequence_lengths())
Q
Qiao Longfei 已提交
319 320 321
        break


Y
Yang Yu 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
class TestMachineTranslation(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda, is_sparse):
337 338 339
    f_name = 'test_{0}_{1}_train'.format(
        'cuda' if use_cuda else 'cpu', 'sparse' if is_sparse else 'dense'
    )
Y
Yang Yu 已提交
340 341 342 343 344 345 346 347 348

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda, is_sparse)

    setattr(TestMachineTranslation, f_name, f)


def inject_test_decode(use_cuda, is_sparse, decorator=None):
349 350 351
    f_name = 'test_{0}_{1}_decode'.format(
        'cuda' if use_cuda else 'cpu', 'sparse' if is_sparse else 'dense'
    )
Y
Yang Yu 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda, is_sparse)

    if decorator is not None:
        f = decorator(f)

    setattr(TestMachineTranslation, f_name, f)


for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):
        inject_test_train(_use_cuda_, _is_sparse_)

for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):

        _decorator_ = None
        if _use_cuda_:
            _decorator_ = unittest.skip(
373 374
                reason='Beam Search does not support CUDA!'
            )
Y
Yang Yu 已提交
375

376 377 378
        inject_test_decode(
            is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_
        )
Y
Yang Yu 已提交
379

Y
Yan Chunwei 已提交
380
if __name__ == '__main__':
Y
Yang Yu 已提交
381
    unittest.main()