topology.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import collections
from itertools import product
from functools import reduce
19 20
from ..utils.log_util import logger

21 22
__all__ = ['CommunicateTopology', 'HybridCommunicateGroup']

23 24
_HYBRID_PARALLEL_GROUP = None

25

26
class ParallelMode(object):
Y
Yanxing Shi 已提交
27 28 29 30 31
    """
    There are all the parallel modes currently supported:
    - DATA_PARALLEL: Distribute input data to different devices.
    - TENSOR_PARALLEL: Shards tensors in the network to different devices.
    - PIPELINE_PARALLEL: Place different layers of the network on different devices.
32
    - SHARDING_PARALLEL: Segment the model parameters, parameter gradients and optimizer states
Y
Yanxing Shi 已提交
33 34 35 36 37 38 39 40 41 42
                         corresponding to the parameters to each device.

    Examples:
        .. code-block:: python

            import paddle
            parallel_mode = paddle.distributed.ParallelMode
            print(parallel_mode.DATA_PARALLEL)  # 0

    """
43

44
    DATA_PARALLEL = 0
45
    TENSOR_PARALLEL = 1
46
    PIPELINE_PARALLEL = 2
J
JZ-LIANG 已提交
47
    SHARDING_PARALLEL = 3
48 49


50
class CommunicateTopology(object):
51 52 53 54 55
    def __init__(
        self,
        hybrid_group_names=["data", "pipe", "sharding", "model"],
        dims=[1, 1, 1, 1],
    ):
56 57
        self._parallel_names = hybrid_group_names
        self._dims = dims
58 59 60
        self.coordinate = collections.namedtuple(
            'Coordinate', self._parallel_names
        )
61 62 63 64 65 66 67
        self._world_size = reduce(lambda x, y: x * y, self._dims)

        ranges = [range(d) for d in self._dims]
        all_coordinate = [self.coordinate(*x) for x in product(*ranges)]

        self._coord2rank = dict(zip(all_coordinate, range(len(all_coordinate))))
        self._rank2coord = dict(
68 69
            zip(self._coord2rank.values(), self._coord2rank.keys())
        )
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    def get_hybrid_group_names(self):
        return self._parallel_names

    def get_dim(self, axis_name):
        return self._dims[self._parallel_names.index(axis_name)]

    def world_size(self):
        return self._world_size

    def get_rank(self, **args):
        assert len(args) == len(self._dims)
        key = self.coordinate(**args)
        assert key in self._coord2rank.keys()
        return self._coord2rank[key]

    def get_coord(self, rank):
        assert rank < self._world_size
        assert rank in self._rank2coord.keys()
        return self._rank2coord[rank]

    def get_axis_list(self, axis_name, index):
        axis = self._parallel_names.index(axis_name)
        ranks = [
94 95
            self._coord2rank[coord]
            for coord in self._coord2rank.keys()
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            if coord[axis] == index
        ]
        ranks.sort()
        return ranks

    def get_dim_size(self, axis_name):
        assert axis_name in self._parallel_names
        return self._dims[self._parallel_names.index(axis_name)]

    def get_comm_list(self, axis_name):
        assert axis_name in self._parallel_names
        other_axis_names = [
            name for name in self._parallel_names if name != axis_name
        ]

        ranges = []
        for name in other_axis_names:
            dim_num = self.get_dim_size(name)
            ranges.append(range(dim_num))

        all_result = []
        for x in product(*ranges):
            key_coord = {}
            for other_name in other_axis_names:
                key_coord[other_name] = x[other_axis_names.index(other_name)]

            result = []
            for i in range(0, self.get_dim_size(axis_name)):
                key_coord[axis_name] = i
                result.append(self._coord2rank[self.coordinate(**key_coord)])
            all_result.append(result)

        return all_result

130 131 132 133 134
    def get_rank_from_stage(self, global_rank, **kwargs):
        coord = self.get_coord(global_rank)
        tf = coord._replace(**kwargs)._asdict()
        return self.get_rank(**tf)

135 136 137 138 139 140 141

class HybridCommunicateGroup(object):
    def __init__(self, topology):
        self.nranks = paddle.distributed.get_world_size()
        self.global_rank = paddle.distributed.get_rank()
        self._topo = topology

142 143 144
        self._dp_degree = self._topo.get_dim('data')
        self._mp_degree = self._topo.get_dim('model')
        self._pp_degree = self._topo.get_dim('pipe')
J
JZ-LIANG 已提交
145
        self._sharding_degree = self._topo.get_dim('sharding')
146 147 148

        self._data_parallel_id = self._get_data_parallel_id()
        self._model_parallel_id = self._get_model_parallel_id()
J
JZ-LIANG 已提交
149
        self._sharding_parallel_id = self._get_sharding_parallel_id()
150
        self.stage_id = self._get_pipe_parallel_id()
151

152 153 154 155 156 157 158 159 160 161
        assert self._check_vaild_topo(), (
            "Here is an unreasonable topogy setting. world_size: {}, but"
            "mp_num: {}, sharding_num: {}, pp_num: {}, dp_num: {}".format(
                self.nranks,
                self._mp_degree,
                self._sharding_degree,
                self._pp_degree,
                self._dp_degree,
            )
        )
162 163 164 165 166 167

        # create comm group for data parallel
        self._dp_group, self._dp_comm_group = self._set_comm_group("data")

        # create comm group for model parallel
        self._mp_group, self._mp_comm_group = self._set_comm_group("model")
168

169 170 171
        # create comm group for pipe parallel
        self._pp_group, self._pp_comm_group = self._set_comm_group("pipe")

J
JZ-LIANG 已提交
172 173
        # create comm group for sharding parallel
        self._sharding_group, self._sharding_comm_group = self._set_comm_group(
174 175
            "sharding"
        )
J
JZ-LIANG 已提交
176

177 178
        # create global group for check inf_nan / clip global norm
        self._check_group, self._check_comm_group = self._set_check_group(
179 180
            "data"
        )
181

182
        # create p2p group
183 184
        self.is_first_stage = self.stage_id == 0
        self.is_last_stage = self.stage_id == (self._pp_degree - 1)
185

186 187 188 189
        # create p2p_groups
        if self._pp_degree > 1:
            self._set_p2p_group()

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        debug_str = (
            "HybridParallelInfo: rank_id: %d, mp_degree: %d, "
            "sharding_degree: %d, pp_degree: %d, dp_degree: %d"
            % (
                self.global_rank,
                self._mp_degree,
                self._sharding_degree,
                self._pp_degree,
                self._dp_degree,
            )
        )
        debug_str += (
            ", mp_group: %s,  sharding_group: %s, pp_group: %s, dp_group: %s, check/clip group: %s"
            % (
                self._mp_group,
                self._sharding_group,
                self._pp_group,
                self._dp_group,
                self._check_group,
            )
        )
211
        logger.info(debug_str)
212 213 214

        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
215

216
    def get_parallel_mode(self):
J
JZ-LIANG 已提交
217
        # there are four modes : DataParallel / TensorParallel / PipelineParallel / ShardingParallel
218
        # NOTE when sharding conjugates with other parallel, sharding should act like a optimizer and
J
JZ-LIANG 已提交
219 220 221
        # adding its parallel logic within that parallelism
        # when use sharding alone, it should have its own parallelism for its parallel logic
        # TODO modify 3 others parallel to support sharding
222 223 224 225 226 227
        if (
            self._mp_degree == 1
            and self._pp_degree == 1
            and self._dp_degree == 1
            and self._sharding_degree > 1
        ):
J
JZ-LIANG 已提交
228 229
            return ParallelMode.SHARDING_PARALLEL
        elif self._mp_degree == 1 and self._pp_degree == 1:
230 231 232
            return ParallelMode.DATA_PARALLEL
        elif self._mp_degree > 1 and self._pp_degree == 1:
            # initialize the seed
233
            return ParallelMode.TENSOR_PARALLEL
234 235 236
        elif self._pp_degree > 1:
            return ParallelMode.PIPELINE_PARALLEL

237
    def _check_vaild_topo(self):
238 239 240 241 242 243 244
        return (
            self._dp_degree
            * self._mp_degree
            * self._pp_degree
            * self._sharding_degree
            == self.nranks
        )
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    def _set_comm_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_groups = self._topo.get_comm_list(parallel_method)

        for group in parallel_groups:
            comm_group = paddle.distributed.new_group(ranks=group)
            if self.global_rank in group:
                parallel_group = group
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def _set_check_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_size = self._topo.get_dim(parallel_method)
        for idx in range(parallel_size):
            parallel_groups = self._topo.get_axis_list(parallel_method, idx)
            comm_group = paddle.distributed.new_group(ranks=parallel_groups)
            if self.global_rank in parallel_groups:
                parallel_group = parallel_groups
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

278 279 280 281 282 283 284 285
    def _get_p2p_next_rank(self):
        assert hasattr(self, 'next_rank'), "next_rank has not been inited"
        return self.next_rank

    def _get_p2p_prev_rank(self):
        assert hasattr(self, 'prev_rank'), "prev_rank has not been inited"
        return self.prev_rank

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    def _set_p2p_group(self):
        comm_lists = self._topo.get_comm_list('pipe')

        self.send_next_group = None
        self.send_prev_group = None
        self.recv_next_group = None
        self.recv_prev_group = None

        for comm_ranks in comm_lists:
            assert len(comm_ranks) == self._pp_degree
            for idx, rank in enumerate(comm_ranks):
                curr_rank = rank
                next_rank = comm_ranks[(idx + 1) % self._pp_degree]
                prev_rank = comm_ranks[(idx - 1) % self._pp_degree]

301 302 303 304
                if self.global_rank == curr_rank:
                    self.next_rank = next_rank
                    self.prev_rank = prev_rank

305
                next_group = paddle.distributed.new_group(
306 307
                    ranks=[curr_rank, next_rank]
                )
308 309 310 311 312 313
                if self.global_rank == curr_rank:
                    self.send_next_group = next_group
                elif self.global_rank == next_rank:
                    self.recv_prev_group = next_group

                prev_group = paddle.distributed.new_group(
314 315
                    ranks=[prev_rank, curr_rank]
                )
316 317 318 319 320 321 322 323 324 325 326

                if self.global_rank == curr_rank:
                    self.send_prev_group = prev_group
                elif self.global_rank == prev_rank:
                    self.recv_next_group = prev_group

        assert self.send_next_group is not None
        assert self.send_prev_group is not None
        assert self.recv_next_group is not None
        assert self.recv_prev_group is not None

327 328 329 330 331 332 333 334 335 336 337 338 339 340
    def topology(self):
        return self._topo

    def get_global_rank(self):
        return self.global_rank

    # data parallel message:
    def _get_data_parallel_id(self):
        return self._topo.get_coord(self.global_rank).data

    def get_data_parallel_rank(self):
        return self._data_parallel_id

    def get_data_parallel_world_size(self):
341
        return self._dp_degree
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

    def get_data_parallel_group(self):
        return self._dp_comm_group

    def get_data_parallel_group_src_rank(self):
        return self._dp_comm_group.ranks[0]

    # model parallel message:
    def _get_model_parallel_id(self):
        return self._topo.get_coord(self.global_rank).model

    def get_model_parallel_rank(self):
        return self._model_parallel_id

    def get_model_parallel_world_size(self):
357
        return self._mp_degree
358 359 360 361 362 363

    def get_model_parallel_group(self):
        return self._mp_comm_group

    def get_model_parallel_group_src_rank(self):
        return self._mp_comm_group.ranks[0]
364

365 366 367 368 369 370 371 372 373 374 375 376 377
    # pipeline parallel message
    def _get_pipe_parallel_id(self):
        return self._topo.get_coord(self.global_rank).pipe

    def get_stage_id(self):
        return self.stage_id

    def get_pipe_parallel_world_size(self):
        return self._pp_degree

    def get_pipe_parallel_group(self):
        return self._pp_comm_group

378
    def get_p2p_groups(self):
379 380 381 382 383 384
        return (
            self.send_next_group,
            self.send_prev_group,
            self.recv_next_group,
            self.recv_prev_group,
        )
385

J
JZ-LIANG 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    # sharding parallel message:
    def _get_sharding_parallel_id(self):
        return self._topo.get_coord(self.global_rank).sharding

    def get_sharding_parallel_rank(self):
        return self._sharding_parallel_id

    def get_sharding_parallel_world_size(self):
        return self._sharding_degree

    def get_sharding_parallel_group(self):
        return self._sharding_comm_group

    def get_sharding_parallel_group_src_rank(self):
        # TODO should the src rank related to the shard rank for each parameter ?
        return self._sharding_comm_group.ranks[0]

403 404 405
    # check parallel group
    def get_check_parallel_group(self):
        return self._check_comm_group
406

407
    def get_rank_from_stage(self, stage_id, **kwargs):
408 409 410
        return self._topo.get_rank_from_stage(
            self.global_rank, pipe=stage_id, **kwargs
        )
W
WangXi 已提交
411 412 413


class _CommunicateGroup(object):
414
    """tmp for static"""
W
WangXi 已提交
415 416 417 418 419 420

    def __init__(self):
        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
        self.groups = dict()

421 422 423 424 425 426
    def set_comm_group(
        self, group_name, group_rank, group_size, ring_id, group_ranks
    ):
        group = paddle.distributed.collective.Group(
            group_rank, ring_id, group_ranks
        )
W
WangXi 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440
        self.groups[group_name] = group

    def get_group(self, group_name):
        assert group_name in self.groups
        return self.groups[group_name]

    def get_model_parallel_group(self):
        return self.get_group('model')

    def get_model_parallel_world_size(self):
        return self.get_group('model').nranks

    def get_model_parallel_rank(self):
        return self.get_group('model').rank