completion.py 87.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import copy
import time
17 18 19

from paddle.fluid import core

20
from .utils import is_gradient_clip_op, __not_shape_var_type__
21
from .operators import find_compatible_distributed_operator_impls
22
from .dist_context import _node_id
23 24
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
25
from .process_mesh import ProcessMesh
26
from .process_group import get_world_process_group
27
from paddle.distributed.fleet.meta_optimizers.common import OpRole
28 29


30 31 32 33
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
58 59
            compatible_result, process_mesh
        )
60 61 62 63 64 65 66 67 68
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
69

70 71 72 73 74 75 76 77 78 79 80 81
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
82 83
            compatible_result, mapping
        )
84 85 86 87 88 89 90
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
91
    Each of dims mapping is also a list.
92
    """
93 94 95 96 97 98 99 100 101 102 103
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
104 105
            list(dim_mappings)
        )
106 107 108 109 110 111
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


112 113 114 115 116 117 118 119 120 121 122 123 124 125
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


126 127 128 129 130
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
131 132
            process_mesh.topology
        ):
133 134 135 136 137 138 139
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


140 141 142 143
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
144
        self._has_prepared = False
145 146 147 148 149 150 151

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
152 153 154 155 156
        if (
            tensor_desc.type() == core.VarDesc.VarType.READER
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES
        ):
157 158
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
159 160
            tensor_node
        )
161 162 163 164 165 166 167 168
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
169 170 171 172 173 174
                    if (
                        pred_op_node.op().type() == "create_py_reader"
                        or pred_op_node.op().type()
                        == "create_double_buffer_reader"
                        or pred_op_node.op().type() == "read"
                    ):
175
                        continue
176 177 178 179 180 181 182 183 184
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            pred_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
185
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
186 187
                            tensor_desc.name()
                        )
188 189 190
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
191 192 193 194 195
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
196
                return False
197 198 199
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
200
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
201 202
                changed = True
        else:
203 204 205
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
206 207 208 209 210 211
                    if (
                        succ_op_node.op().type() == "create_py_reader"
                        or succ_op_node.op().type()
                        == "create_double_buffer_reader"
                        or succ_op_node.op().type() == "read"
                    ):
212
                        continue
213 214 215 216 217 218 219 220 221
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            succ_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
222
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
223 224
                            tensor_desc.name()
                        )
225 226 227
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
228 229 230 231 232
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
233
                return False
234 235 236
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
237
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
238
                changed = True
239
        return changed
240

241 242 243 244 245 246
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
247 248 249 250 251 252
        if (
            op_desc.type() == "create_py_reader"
            or op_desc.type() == "create_double_buffer_reader"
            or op_desc.type() == "while"
            or op_desc.type() == "read"
        ):
253 254 255
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
256
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
257 258
        if fwd:
            for tensor_node in op_node.inputs:
259
                if tensor_node.is_var() and tensor_node.var() is not None:
260 261 262 263
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
264 265
                        tensor_desc.name()
                    ):
266
                        continue
267 268 269 270 271 272 273 274 275
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
276 277
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
278 279 280 281 282 283 284
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
285
                        if not _validate_dims_mapping(
286 287
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
288
                            continue
289 290 291
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
292
                            op_dist_attr.set_input_dims_mapping(
293 294
                                tensor_desc.name(), compatible_dims_mapping
                            )
295 296
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
297 298 299
            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, fwd=True
            )
300 301 302 303 304 305 306 307
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
308 309 310 311
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
312 313 314 315 316 317 318 319
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
320
                    else:
321 322 323 324 325 326 327 328
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
329
        else:
330
            for tensor_node in op_node.outputs:
331
                if tensor_node.is_var() and tensor_node.var() is not None:
332 333 334 335
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
336 337
                        tensor_desc.name()
                    ):
338
                        continue
339 340 341 342 343 344 345 346 347
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
348 349
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
350 351 352 353 354 355 356
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
357
                        if not _validate_dims_mapping(
358 359
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
360
                            continue
361 362 363
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
364
                            op_dist_attr.set_output_dims_mapping(
365 366
                                tensor_desc.name(), compatible_dims_mapping
                            )
367 368
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
369
            op_dist_impls = find_compatible_distributed_operator_impls(
370 371
                dist_op, fwd=False
            )
372 373 374 375 376 377 378 379
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
380 381 382 383
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
384 385 386 387 388 389 390 391
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
392
                    else:
393 394 395 396 397 398 399 400
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
401
        return changed
402

403 404 405 406
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
407 408
                parent_node
            )
409
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
410 411 412 413 414 415
                child_node
            )
            if (
                parent_node_dist_attr.process_mesh
                != child_node_dist_attr.process_mesh
            ):
416
                continue
417 418 419
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
420 421 422 423 424
                [parent_node_dims_mapping, child_node_dims_mapping]
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, parent_node_dist_attr.process_mesh
            ):
425
                return False
426 427 428
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != parent_node_dims_mapping
            ):
429 430
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
431 432 433
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != child_node_dims_mapping
            ):
434
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
435 436
                changed = True
        return changed
437

438 439 440
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
441 442
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
443 444 445
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
446
        ]
447
        for op_node in op_nodes:
448 449 450 451
            if (
                op_node.op() is not None
                and op_node.op().type() in related_reader_ops
            ):
452
                continue
453 454 455 456 457 458
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
459 460 461 462 463 464 465 466 467
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
468
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
469 470
                            tensor_desc.name()
                        )
471 472
                        tensor_dist_attr.dims_mapping = op_dims_mapping

473 474 475 476
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
477
            changed = False
478
            for is_fwd in [True, False]:
479 480 481 482 483
                all_nodes = (
                    self._dist_context.serial_ordered_nodes
                    if is_fwd
                    else reversed(self._dist_context.serial_ordered_nodes)
                )
484 485 486
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
487 488
                            node, fwd=is_fwd
                        )
489 490 491 492
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
493 494
                            node, fwd=is_fwd
                        )
495 496
                        if op_changed:
                            changed = True
497 498 499
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
500
            if changed:
501
                reach_fix_point = False
502
            else:
503
                reach_fix_point = True
504
        # NOTE: this will be removed after changing the reshard rule
505
        self._update_dims_mapping_for_special()
506

507 508 509 510 511 512
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
513 514
                nearest_op_node
            )
515 516
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
517 518 519 520 521 522
                [process_mesh, nearest_process_mesh]
            )
            if (
                compatible_process_mesh is not None
                and process_mesh != compatible_process_mesh
            ):
523 524 525 526 527 528 529
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
530 531 532 533 534
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
535 536 537 538 539 540
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
541 542 543 544 545 546
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
547
                    tensor_dist_attr.process_mesh = compatible_process_mesh
548
                # Set the process mesh of the op node's outputs
549 550
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
551 552 553 554 555
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
556 557 558
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
559 560 561 562 563 564
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
565 566 567 568 569
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
570 571 572 573 574
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
575 576 577
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
578 579 580 581 582 583
            for node in nodes[idx + 1 :]:
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
598 599
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
600
                    if node.is_var() and node.var() is not None:
601 602 603 604
                        if (
                            node.var().type() != core.VarDesc.VarType.READER
                            and len(node.var().shape()) == 1
                        ):
605 606 607 608
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
609 610 611 612 613
                        if (
                            node.op().type() == "create_py_reader"
                            or node.op().type() == "create_double_buffer_reader"
                            or node.op().type() == "read"
                        ):
614 615
                            flag = False
                        for tensor_node in node.inputs:
616 617 618 619 620 621 622 623 624
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
                                    in __not_shape_var_type__
                                    or len(tensor_node.var().shape()) != 1
                                ):
625 626 627
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
628 629 630 631 632 633 634 635 636
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
                                    in __not_shape_var_type__
                                    or len(tensor_node.var().shape()) != 1
                                ):
637 638 639 640 641 642 643 644
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
661 662 663
                    dist_attr.set_output_dims_mapping(
                        arg_name, new_dims_mapping
                    )
664

665 666 667
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
668
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
669 670
                sub_graph_id
            )
671 672
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
673 674
                while_op_node
            )
675 676 677 678 679
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
680 681 682
                if (node.is_var() and node.var() is not None) or (
                    node.is_op() and node.op() is not None
                ):
683 684
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
685 686
                        merged_process_mesh, dist_attr.process_mesh
                    )
687
            while_op_dist_attr.process_mesh = merged_process_mesh
688
            _make_dims_mapping_replicate(while_op_dist_attr)
689 690 691 692 693 694 695

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
696 697 698 699 700
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                ):
701 702 703 704 705
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
706 707
                _find_nodes_related_to_cond(cond_tensor_node)
            )
708 709 710 711

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
712 713 714 715 716 717
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                    and len(node.outputs) == 0
                ):
718 719 720 721
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
722 723
                _find_nodes_related_to_cond(cond_tensor_node)
            )
724 725 726 727
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
728 729 730 731 732
                if (
                    output_node.is_var()
                    and output_node.var() is not None
                    and output_node.var().name() == stepscopes_tensor_name
                ):
733 734 735 736 737
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
738 739
                    node
                )
740
                tensor_dist_attr.process_mesh = merged_process_mesh
741
                _make_dims_mapping_replicate(tensor_dist_attr)
742 743 744

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
745 746 747 748
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_inputs_dist_attrs.items():
749
                nearest_tensor_node = _find_nearest_tensor_node_before(
750 751 752 753 754 755 756 757 758 759 760 761
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
762 763 764

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
765 766 767 768
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_outputs_dist_attrs.items():
769
                nearest_tensor_node = _find_nearest_tensor_node_before(
770 771 772 773
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
774 775 776
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
777 778 779 780 781 782 783 784 785 786 787
                        while_op_node_idx,
                        tensor_name,
                    )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
788 789 790 791 792 793

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
794 795
                    array_node
                )
796
                merged_process_mesh = merge_process_mesh_two(
797 798
                    merged_process_mesh, dist_attr.process_mesh
                )
799 800
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
801 802
                    array_node
                )
803
                dist_attr.process_mesh = merged_process_mesh
804 805 806 807 808
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
809 810
                parent_node
            )
811
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
812 813 814
                child_node
            )
            parent_node_dist_attr.process_mesh = (
815
                child_node_dist_attr.process_mesh
816 817 818 819 820 821 822 823 824 825 826 827
            )
            compatible_process_mesh = compute_compatible_process_mesh(
                [
                    parent_node_dist_attr.process_mesh,
                    child_node_dist_attr.process_mesh,
                ]
            )
            if (
                compatible_process_mesh is not None
                and parent_node_dist_attr.process_mesh
                != compatible_process_mesh
            ):
828
                parent_node_dist_attr.process_mesh = compatible_process_mesh
829 830 831 832
            if (
                compatible_process_mesh is not None
                and child_node_dist_attr.process_mesh != compatible_process_mesh
            ):
833
                child_node_dist_attr.process_mesh = compatible_process_mesh
834 835 836 837 838 839 840

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
841 842 843
            tensor_dist_attr = (
                self._dist_context.get_tensor_dist_attr_for_graph(tensor_node)
            )
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
861 862
                first_op_node
            )
863
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
864 865
                "process_mesh"
            ):
866
                compatible_process_mesh = compute_compatible_process_mesh(
867 868 869 870 871 872
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and op_dist_attr.process_mesh != compatible_process_mesh
                ):
873 874 875 876 877 878 879
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
880 881 882 883
            if (
                op_dist_attr.process_mesh is not None
                and idx_of_first_op_node_has_process_mesh == -1
            ):
884 885 886 887 888 889
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
890
        for idx, op_node in enumerate(
891 892
            ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :]
        ):
893
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
894 895
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
896 897
                nearest_op_node
            )
898 899 900 901 902
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
903 904
            idx_of_first_op_node_has_process_mesh
        ]
905 906 907 908 909 910
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

911
        # Step 4: adjust the process meshes between graphs
912 913
        self._update_process_mesh_between_graphs()

914
    def _prepare(self):
915 916
        if self._has_prepared:
            return
917 918 919 920 921 922 923 924 925 926 927 928 929
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
930 931
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
932 933 934 935 936 937 938 939 940
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
941 942 943 944 945 946 947
                        if (
                            before_node.is_var()
                            and before_node.var() is not None
                            and before_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and before_node.var().name() == node.var().name()
                        ):
948
                            self._node_pairs_between_graphs.append(
949 950 951 952 953 954 955 956 957 958
                                (before_node, node)
                            )
                    for after_node in all_nodes[idx + 1 :]:
                        if (
                            after_node.is_var()
                            and after_node.var() is not None
                            and after_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and after_node.var().name() == node.var().name()
                        ):
959
                            self._node_pairs_between_graphs.append(
960 961
                                (after_node, node)
                            )
962
        self._has_prepared = True
963

964
    def complete_forward_annotation(self, serial_main_program=None):
965
        """Complete annotation for the partial annotated serial_main_program.
966 967
        Arguments:
            serial_main_program: partial annotated serial_main_program.
968
        Returns:e
969 970 971
            serial_main_program: completed annotated serial_main_program.
        """

972 973 974
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
975
            self._dist_context._serial_main_program = serial_main_program
976

977 978 979 980
        start_time = time.time()
        # print("start time", start_time, flush=True)
        if not self._dist_context.data_parallel:
            self._dist_context.initialize(with_graph=True)
981

982
            # self._dist_context.validate_dist_attr_for_program()
983

984
            self._prepare()
985

986
            self._update_process_mesh()
987

988 989 990 991 992 993 994 995 996 997 998 999
            self._update_dims_mapping()

            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
            self._dist_context.initialize(with_graph=False)

            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

            # print_program_with_dist_attr(self._dist_context.serial_main_program,
            #                              self._dist_context)
1000

1001
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
1002
        self._complete_high_order_grad_annotation(serial_main_program)
1003

1004 1005 1006 1007 1008
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1009 1010 1011 1012
        end_time = time.time()
        # print("end time", end_time, flush=True)
        # print("elapsed time", end_time - start_time, flush=True)

1013 1014
        return serial_main_program

1015 1016 1017 1018
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
1019 1020 1021
        for (
            dist_tensor
        ) in self._dist_context._dist_tensors_for_program.values():
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            serial_tensor = dist_tensor.serial_tensor
            tensor_dist_attr = dist_tensor.dist_attr
            tensor_dist_attr.process_mesh = process_mesh

        for dist_op in self._dist_context._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            op_desc = serial_op.desc
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
            input_xshape_arg_names = []
            if "XShape" in op_desc.input_names():
                input_xshape_arg_names = op_desc.input("XShape")
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in input_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
1040 1041
                            arg_name
                        )
1042 1043 1044 1045 1046
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_input_dims_mapping(
1047 1048
                                arg_name, new_dims_mapping
                            )
1049 1050
                    else:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
1051 1052
                            arg_name
                        )
1053 1054 1055 1056 1057
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_input_dims_mapping(
1058 1059
                                arg_name, new_dims_mapping
                            )
1060
                # Set tensor's dims_mapping by the op's
1061 1062 1063 1064 1065 1066 1067 1068
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        serial_tensor
                    )
                )
                tensor_dist_attr.dims_mapping = (
                    op_dist_attr.get_input_dims_mapping(arg_name)
                )
1069 1070 1071 1072 1073 1074 1075 1076
            output_xshape_arg_names = []
            if "XShape" in op_desc.output_names():
                output_xshape_arg_names = op_desc.output("XShape")
            for arg_name in serial_op.output_arg_names:
                serial_tensor = dist_op.get_serial_output(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in output_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
1077 1078
                            arg_name
                        )
1079 1080 1081 1082 1083
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_output_dims_mapping(
1084 1085
                                arg_name, new_dims_mapping
                            )
1086 1087
                    else:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
1088 1089
                            arg_name
                        )
1090 1091 1092 1093 1094
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_output_dims_mapping(
1095 1096
                                arg_name, new_dims_mapping
                            )
1097
                # Set tensor's dims_mapping by the op's
1098 1099 1100 1101 1102 1103 1104 1105
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        serial_tensor
                    )
                )
                tensor_dist_attr.dims_mapping = (
                    op_dist_attr.get_output_dims_mapping(arg_name)
                )
1106 1107

            op_dist_impls = find_compatible_distributed_operator_impls(
1108 1109
                dist_op, partial=False
            )
1110 1111 1112 1113 1114
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
1115 1116 1117 1118
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_input_dims_mapping(tensor_name)
                            if tensor.is_parameter
                            else [-1 for i in tensor_desc.shape()]
                        )
1173 1174 1175 1176 1177 1178
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_output_dims_mapping(tensor_name)
                        )
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1208
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
1209
        """
1210
        NOTE:
1211 1212 1213 1214
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

1215 1216 1217 1218 1219
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

1220 1221 1222 1223 1224 1225 1226
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
1227
                if op.desc.original_id() == id:
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
1240 1241
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1242 1243 1244
                continue

            if int(op.attr('op_role')) == int(
1245 1246 1247 1248
                core.op_proto_and_checker_maker.OpRole.Backward
            ) and int(ops[idx - 1].attr('op_role')) == int(
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1249 1250
                appended_grad_times += 1

1251
            if int(op.attr('op_role')) == int(
1252 1253 1254
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1255 1256 1257
                assert op.type == "fill_constant"
                break

1258 1259 1260
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1261 1262 1263 1264
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1265
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1266
                forward_op = _get_op_by_id(
1267 1268 1269 1270 1271
                    ops,
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()
                    ],
                )
1272 1273
                assert forward_op is not None

1274 1275 1276
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1277 1278 1279 1280 1281
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
1282 1283 1284 1285
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1286 1287
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
1288 1289 1290 1291 1292 1293 1294
                                input_name
                            ]
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1295 1296 1297
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1298 1299
                                input_var
                            ).dims_mapping
1300 1301
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1302 1303 1304 1305 1306
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1307
                        else:
1308 1309 1310 1311 1312 1313 1314 1315
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1316
                    grad_op_dist_attr.set_input_dims_mapping(
1317 1318
                        input_name, ref_dims_mapping
                    )
1319 1320 1321 1322 1323

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1324 1325
                        fwd_name
                    )
1326 1327 1328 1329 1330 1331
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1332 1333
                        output_var, tensor_dist_attr
                    )
1334
                    # op
1335
                    grad_op_dist_attr.set_output_dims_mapping(
1336 1337
                        output_name, ref_dims_mapping
                    )
1338 1339

                self._dist_context.set_op_dist_attr_for_program(
1340 1341
                    grad_op, grad_op_dist_attr
                )
1342 1343 1344 1345 1346 1347 1348

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1349 1350 1351 1352 1353
                    assert (
                        output_name in grad_var_to_var[appended_grad_times]
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1354
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
1355 1356
                        output_name
                    ]
1357
                    ref_fwd_var = vars[ref_fwd_var_name]
1358 1359 1360 1361 1362
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1363 1364 1365 1366 1367 1368 1369 1370
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1371 1372
                        output_var, tensor_dist_attr
                    )
1373 1374 1375 1376 1377
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1378 1379
                            var_name, ref_fwd_dims_mapping
                        )
1380
                    grad_op_dist_attr.set_output_dims_mapping(
1381 1382
                        output_name, ref_fwd_dims_mapping
                    )
1383

1384
                elif grad_op.type == 'fill_any_like':
1385 1386
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1387 1388 1389 1390 1391
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1392 1393 1394 1395 1396 1397 1398 1399 1400
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1401 1402
                        output_var, tensor_dist_attr
                    )
1403 1404 1405
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1406
                    grad_op_dist_attr.set_input_dims_mapping(
1407 1408
                        ref_var_name, ref_dims_mapping
                    )
1409
                    grad_op_dist_attr.set_output_dims_mapping(
1410 1411
                        output_var_name, ref_dims_mapping
                    )
1412 1413 1414 1415 1416

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
1417 1418 1419
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1420 1421

                self._dist_context.set_op_dist_attr_for_program(
1422 1423
                    grad_op, grad_op_dist_attr
                )
1424

1425
    def complete_backward_annotation(self, serial_main_program=None):
1426
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1427

1428 1429 1430
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1431
            self._dist_context._serial_main_program = serial_main_program
1432 1433 1434 1435 1436 1437 1438 1439

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
1440 1441 1442
                grad_var_name
            ), "[{}] is not a grad varnme.".format(grad_var_name)
            return grad_var_name[: grad_var_name.find("@GRAD")]
1443 1444 1445

        def _get_op_by_id(ops, id):
            for op in ops:
1446
                if op.desc.original_id() == id:
1447 1448 1449 1450 1451 1452
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1453 1454 1455
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1456 1457 1458 1459
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

1460 1461 1462
        assert (
            first_backward_op_idx >= 0
        ), "No backward procedure found in this program."
1463 1464 1465 1466

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1467 1468 1469
        grad_var_to_var = dist_op_context.grad_var_to_var[
            len(dist_op_context.grad_var_to_var)
        ]
1470 1471 1472 1473 1474 1475

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                assert (
                    len(ops[idx].input_arg_names) == 0
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names)
                )
                assert (
                    len(ops[idx].output_arg_names) == 1
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names)
                )
1486 1487 1488

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
1489 1490
                    grad_var.name
                )
1491 1492 1493 1494
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                process_mesh = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).process_mesh
                )
                dims_mapping = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).dims_mapping
                )
1505 1506 1507
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
1508 1509
                    grad_var, tensor_dist_attr
                )
1510

1511 1512
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
1513 1514 1515
                op_dist_attr.set_output_dims_mapping(
                    grad_var.name, dims_mapping
                )
1516
                self._dist_context.set_op_dist_attr_for_program(
1517 1518
                    ops[idx], op_dist_attr
                )
1519
                continue
1520

1521 1522 1523
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1524 1525 1526 1527
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1528
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1529 1530 1531
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
1532 1533 1534
                        grad_op.desc.original_id()
                    ],
                )
1535 1536
                assert forward_op is not None

J
JZ-LIANG 已提交
1537
                if grad_op.type == "concat" and forward_op.type == "split":
1538 1539 1540 1541 1542
                    forward_op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_program(
                            forward_op
                        )
                    )
J
JZ-LIANG 已提交
1543 1544
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
1545 1546 1547 1548 1549
                    ref_dims_mapping = (
                        forward_op_dist_attr.get_input_dims_mapping(
                            split_input_var_name
                        )
                    )
J
JZ-LIANG 已提交
1550 1551 1552 1553 1554
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1555 1556
                            input_name, ref_dims_mapping
                        )
J
JZ-LIANG 已提交
1557 1558 1559 1560

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1561
                    self._dist_context.set_tensor_dist_attr_for_program(
1562 1563
                        output_var, output_var_dist_attr
                    )
J
JZ-LIANG 已提交
1564

1565
                    grad_op_dist_attr.set_output_dims_mapping(
1566 1567
                        output_var.name, ref_dims_mapping
                    )
J
JZ-LIANG 已提交
1568
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1569
                    self._dist_context.set_op_dist_attr_for_program(
1570 1571
                        grad_op, grad_op_dist_attr
                    )
1572 1573 1574
                    grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                    grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx

J
JZ-LIANG 已提交
1575 1576
                    continue

1577 1578 1579
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1580
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1581
                grad_op_dist_attr = OperatorDistributedAttribute()
1582
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1583 1584

                for input_name in grad_op.input_arg_names:
1585 1586 1587 1588
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1589 1590
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
1591 1592 1593 1594 1595
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1596 1597 1598
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1599 1600
                                input_var
                            ).dims_mapping
1601
                    else:
1602
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1603 1604 1605 1606 1607
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1608
                        else:
1609 1610 1611 1612 1613 1614 1615 1616
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1617
                    grad_op_dist_attr.set_input_dims_mapping(
1618 1619
                        input_name, ref_dims_mapping
                    )
1620

1621 1622 1623 1624
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1625 1626
                        fwd_name
                    )
1627 1628 1629 1630 1631 1632
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1633 1634
                        output_var, tensor_dist_attr
                    )
1635
                    # op
1636
                    grad_op_dist_attr.set_output_dims_mapping(
1637 1638
                        output_name, ref_dims_mapping
                    )
1639

1640 1641
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1642
                self._dist_context.set_op_dist_attr_for_program(
1643 1644
                    grad_op, grad_op_dist_attr
                )
1645

1646
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1647
            else:
1648 1649 1650
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1651 1652 1653 1654 1655
                    assert (
                        output_name in grad_var_to_var
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1656 1657
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
1658 1659 1660 1661 1662
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1663 1664 1665 1666 1667 1668 1669 1670 1671
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1672 1673
                        output_var, tensor_dist_attr
                    )
1674

1675 1676 1677 1678 1679
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1680 1681
                            var_name, ref_fwd_dims_mapping
                        )
1682
                    grad_op_dist_attr.set_output_dims_mapping(
1683 1684
                        output_name, ref_fwd_dims_mapping
                    )
1685 1686
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1687

1688
                elif grad_op.type == 'fill_any_like':
1689 1690
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1691 1692 1693 1694 1695
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1696 1697 1698 1699 1700 1701 1702 1703 1704
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1705 1706
                        output_var, tensor_dist_attr
                    )
1707 1708 1709
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1710
                    grad_op_dist_attr.set_input_dims_mapping(
1711 1712
                        ref_var_name, ref_dims_mapping
                    )
1713
                    grad_op_dist_attr.set_output_dims_mapping(
1714 1715
                        output_var_name, ref_dims_mapping
                    )
1716 1717

                else:
1718 1719 1720
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1721 1722

                self._dist_context.set_op_dist_attr_for_program(
1723 1724
                    grad_op, grad_op_dist_attr
                )
1725

1726
    def complete_update_annotation(self, serial_main_program):
1727
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1728 1729
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1730 1731 1732 1733
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1734
        world_ranks = get_world_process_group().ranks
1735 1736

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1737
        # and must be passed into this function.
1738 1739
        # TODO: We should fix this behavior.

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1750
                if is_gradient_clip_op(op):
1751
                    if op.type in [
1752 1753 1754 1755 1756
                        "sum",
                        "sqrt",
                        "fill_constant",
                        "elementwise_max",
                        "elementwise_div",
1757 1758 1759 1760 1761 1762
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1763 1764
                                in_var
                            )
1765
                            op_dist_attr.set_input_dist_attr(
1766 1767
                                in_name, in_dist_attr
                            )
1768 1769 1770 1771 1772 1773 1774 1775
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
1776 1777
                                out_var, out_dist_attr
                            )
1778
                            op_dist_attr.set_output_dist_attr(
1779 1780
                                out_name, out_dist_attr
                            )
1781 1782
                    else:
                        in_var = vars[op.input("X")[0]]
1783 1784 1785 1786 1787
                        in_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                        )
1788 1789 1790 1791
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1792 1793 1794 1795
                        if (
                            op.type == "cast"
                            and ops[idx + 1].type == "elementwise_mul"
                        ):
1796 1797
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1798 1799
                                ref_var
                            )
1800 1801 1802 1803 1804 1805 1806 1807 1808
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
1809 1810 1811 1812
                            assert (
                                len(out_var.shape) == 1
                                and out_var.shape[0] == 1
                            )
1813 1814
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1815 1816
                            out_var, out_dist_attr
                        )
1817 1818 1819 1820

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
1821 1822
                            in_var.name, in_dist_attr
                        )
1823
                        op_dist_attr.set_output_dist_attr(
1824 1825
                            out_var.name, out_dist_attr
                        )
Z
zhaoyingli 已提交
1826 1827

                    self._dist_context.set_op_dist_attr_for_program(
1828 1829
                        op, op_dist_attr
                    )
1830 1831

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1832 1833 1834 1835 1836 1837
                    assert (
                        len(op.input("Param")) == 1
                    ), "Only support one-to-one now."
                    assert (
                        len(op.input("Grad")) == 1
                    ), "Only support one-to-one now."
1838 1839 1840
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

1841 1842 1843 1844 1845
                    param_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        )
                    )
1846
                    assert param_dist_attr is not None
1847 1848 1849 1850 1851
                    ref_process_mesh = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).process_mesh
                    )
1852
                    assert ref_process_mesh is not None
1853 1854 1855 1856 1857
                    ref_dims_mapping = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).dims_mapping
                    )
1858 1859 1860
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
1861 1862 1863 1864 1865 1866
                    op_dist_attr.set_input_dims_mapping(
                        grad_var.name, ref_dims_mapping
                    )
                    op_dist_attr.set_input_dims_mapping(
                        param.name, ref_dims_mapping
                    )
1867
                    op_dist_attr.set_output_dims_mapping(
1868 1869
                        param.name, ref_dims_mapping
                    )
1870 1871
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1872
                    op_dist_attr.set_output_dims_mapping(
1873 1874
                        learning_var.name, [-1]
                    )
1875 1876 1877 1878

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1879
                        var_dist_attr.process_mesh = world_ranks
1880 1881
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1882 1883
                            learning_var, var_dist_attr
                        )
1884 1885 1886 1887

                    for input_name in op.desc.input_names():

                        if input_name in [
1888 1889 1890 1891 1892 1893 1894
                            'Param',
                            'Grad',
                            'LearningRate',
                            "SkipUpdate",
                            "Beta1Tensor",
                            "Beta2Tensor",
                            "EpsilonTensor",
1895 1896
                        ]:
                            continue
1897 1898
                        if len(op.desc.input(input_name)) == 0:
                            continue
1899 1900 1901 1902 1903 1904 1905

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1906
                            op_dist_attr.set_input_dims_mapping(
1907 1908
                                input_var.name, [-1]
                            )
1909
                            op_dist_attr.set_output_dims_mapping(
1910 1911
                                input_var.name, [-1]
                            )
1912 1913 1914
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
1915 1916
                                input_var.name, ref_dims_mapping
                            )
1917
                            op_dist_attr.set_output_dims_mapping(
1918 1919
                                input_var.name, ref_dims_mapping
                            )
1920 1921 1922

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
1923 1924
                            input_var, input_var_attr
                        )
1925 1926

                    self._dist_context.set_op_dist_attr_for_program(
1927 1928
                        op, op_dist_attr
                    )
1929
                    continue
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1943
            self._dist_context._serial_main_program = serial_main_program
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

        import time

        start_time = time.time()
        self._dist_context._is_initialized = True

        start_time = time.time()
        self._dist_context._init_dist_attr_for_program()

        start_time = time.time()
        self._init_global_mesh_for_program()

        # Do the validation check and amend some completion
        start_time = time.time()
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1964 1965 1966 1967
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1968 1969 1970 1971 1972 1973
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
1974 1975
                    tensor
                )
1976 1977 1978 1979 1980 1981 1982 1983 1984
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1985
                op_dist_impls = find_compatible_distributed_operator_impls(
1986 1987
                    dist_op, fwd=True
                )
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr