matmul_v2_mkldnn_op.cc 34.7 KB
Newer Older
S
Sławomir Siwek 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
19

20
namespace {
21
using dnnl::memory;
22
using paddle::framework::ExecutionContext;
23
using paddle::platform::MatMulV2MKLDNNHandler;
24
using paddle::platform::MKLDNNDeviceContext;
25
using phi::vectorize;
26
using phi::funcs::OneDNNGetDataType;
27
using Tensor = phi::DenseTensor;
28
using paddle::framework::GradVarName;
29
using phi::make_ddim;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static Tensor FoldOuterDims(const Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext &dev_ctx,
                                   const Tensor *input) {
  auto input_dims = vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  Tensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = vectorize(output.dims());

  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
60 61
  phi::funcs::ReorderOneDNNHandler reorder_handler(
      output_dims, input->dtype(), input_type, dev_ctx.GetEngine());
62 63

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
64
      memory::format_tag::abc, phi::funcs::to_void_cast(input->data<T>()));
65 66 67 68 69 70 71 72 73 74 75 76 77
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  auto &astream = MKLDNNDeviceContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

78 79
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
80 81
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim &x_dim) {
82
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
83 84 85 86
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
87 88
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim &y_dim) {
89
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
90 91
}

J
Jacek Czaja 已提交
92 93 94
phi::DDim GetDimForInput(const ExecutionContext &ctx, std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
95
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
J
Jacek Czaja 已提交
96 97 98 99 100 101
  if (!shape.empty() && !axis.empty()) {
    return input_dims.reshape(shape).transpose(axis);
  }
  return input_dims;
}

102 103
template <typename XT, typename YT, typename OT>
class MatMulMKLDNNHandler
104
    : public phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul> {
105 106 107 108 109 110 111 112 113
 public:
  MatMulMKLDNNHandler(const dnnl::engine engine,
                      paddle::platform::Place cpu_place,
                      Tensor *x,
                      bool trans_x,
                      Tensor *y,
                      bool trans_y,
                      Tensor *out,
                      float scale)
114 115
      : phi::funcs::OneDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                              cpu_place) {
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

138 139 140
    auto x_md = memory::desc(x_dims, OneDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, OneDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, OneDNNGetDataType<OT>(), out_strides);
141 142 143 144 145 146 147 148 149

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor *input) {
    const YT *input_data = input->data<YT>();
150 151 152
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->weights_desc(),
        phi::funcs::to_void_cast<YT>(input_data));
153 154 155
  }

 public:
156 157 158
  void Execute(const phi::DenseTensor *x,
               const phi::DenseTensor *y,
               phi::DenseTensor *out) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void *x_ptr = src_memory_p->get_data_handle();
    void *y_ptr = weights_memory_p->get_data_handle();
    void *out_ptr = dst_memory_p->get_data_handle();
S
Sławomir Siwek 已提交
176 177
    auto offsets = std::make_tuple(x_offset_, y_offset_, out_offset_);
    for (uint16_t i = 0; i < batch_size_; ++i) {
178 179 180
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
181
      matmul_p->execute(astream, matmul_args);
182 183 184 185 186 187
      x_ptr = static_cast<char *>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char *>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char *>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();

188
    out->set_mem_desc(dst_memory_p->get_desc().reshape(out->dims()));
189 190
  }

191
  std::shared_ptr<dnnl::memory> AcquireDstMemory(phi::DenseTensor *output) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }

 private:
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
};

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(
    Tensor *x, Tensor *y, Tensor *out, bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_,
                 mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

S
Sławomir Siwek 已提交
264 265
std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                               const std::vector<int> &axis) {
266 267 268 269
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
270 271
  PADDLE_ENFORCE_EQ(axis_set.size(),
                    axis_size,
272 273 274
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

275 276
  PADDLE_ENFORCE_EQ(in_rank,
                    axis_size,
277 278 279 280 281
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
282 283
                        in_rank,
                        axis_size));
284

285 286
  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                    axis_size,
287 288 289 290 291 292 293 294 295 296
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

297
std::vector<int64_t> GetInputStrides(const ExecutionContext &ctx,
298 299 300
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
301
  auto input_dims = ctx.Input<phi::DenseTensor>(input_name)->dims();
302 303 304 305 306
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

307
  auto &MatrixDimsFromVector =
308
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
309
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
310 311
      MatrixDimsFromVector(new_dims),
      0,
312 313 314 315
      ctx.HasAttr("trans_x")
          ? ctx.Attr<bool>(std::string("trans_") +
                           static_cast<char>(std::tolower(input_name[0])))
          : ctx.Attr<bool>(std::string("transpose_") + input_name[0]));
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

335 336 337
bool IsOutputFused(const ExecutionContext &ctx) {
  auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto &fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
338 339 340
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

341
template <typename T, typename T_out>
342
void ExecuteMatMulV2(const ExecutionContext &ctx,
343
                     const dnnl::engine onednn_engine,
344 345
                     const Tensor *x,
                     const std::vector<int64_t> &x_dims,
346
                     bool trans_x,
347 348
                     const Tensor *y,
                     const std::vector<int64_t> &y_dims,
349
                     bool trans_y,
350
                     Tensor *out) {
351 352
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
353 354 355 356 357 358 359 360 361 362
  MatMulV2MKLDNNHandler<T, T, T_out> handler(ctx,
                                             onednn_engine,
                                             ctx.GetPlace(),
                                             x_dims,
                                             trans_x,
                                             y_dims,
                                             trans_y,
                                             IsOutputFused(ctx),
                                             x_strides_override,
                                             y_strides_override);
363

364 365 366
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
367

368
  auto matmul_p = handler.AcquireForwardPrimitive();
369

370 371 372 373
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
374

375
  if (ctx.HasInput("ResidualData")) {
376
    auto *residual_data = ctx.Input<phi::DenseTensor>("ResidualData");
377 378 379 380 381
    const auto residual_data_memory_p = handler.AcquireSrcMemory(residual_data);
    matmul_args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                        *residual_data_memory_p});
  }

382
  auto &astream = MKLDNNDeviceContext::tls().get_stream();
383 384
  matmul_p->execute(astream, matmul_args);
  astream.wait();
385 386 387

  // TODO(jczaja): Explain why int8 format of dst is ABCD and do not need
  // permute
388
  if (IsOutputFused(ctx) && !phi::funcs::is_int8<T_out>()) {
389 390
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_Out");
    auto permuted_md = dst_memory_p->get_desc().permute_axes(axis);
391
    out->set_mem_desc(permuted_md.reshape(vectorize<int64_t>(out->dims())));
392 393
  } else {
    out->set_mem_desc(
394
        dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
395
  }
396 397 398 399 400
}

template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
401 402 403 404 405 406 407 408 409 410
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
411 412
    constexpr bool is_int8 = phi::funcs::is_int8<T>();
    constexpr bool is_bfloat16 = phi::funcs::is_bfloat16<T>();
413 414 415 416
    const bool force_fp32_output = ctx.HasAttr("force_fp32_output")
                                       ? ctx.Attr<bool>("force_fp32_output")
                                       : false;
    constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();

    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
    auto *out = ctx.Output<phi::DenseTensor>("Out");
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");

    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));

    int ndims = std::max(x_dims.size(), y_dims.size());
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, out);

440
    if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
441 442 443 444 445 446 447 448 449
      ExecuteMatMulV2<T, float>(ctx,
                                onednn_engine,
                                x,
                                x_bd_dims,
                                trans_x,
                                y,
                                y_bd_dims,
                                trans_y,
                                out);
450
    } else if (is_bfloat16) {
451 452 453 454 455 456 457 458 459
      ExecuteMatMulV2<T, paddle::platform::bfloat16>(ctx,
                                                     onednn_engine,
                                                     x,
                                                     x_bd_dims,
                                                     trans_x,
                                                     y,
                                                     y_bd_dims,
                                                     trans_y,
                                                     out);
460
    } else if (fuse_relu) {
461 462 463 464 465 466 467 468 469
      ExecuteMatMulV2<T, uint8_t>(ctx,
                                  onednn_engine,
                                  x,
                                  x_bd_dims,
                                  trans_x,
                                  y,
                                  y_bd_dims,
                                  trans_y,
                                  out);
470
    } else {
471 472 473 474 475 476 477 478 479
      ExecuteMatMulV2<T, int8_t>(ctx,
                                 onednn_engine,
                                 x,
                                 x_bd_dims,
                                 trans_x,
                                 y,
                                 y_bd_dims,
                                 trans_y,
                                 out);
480 481
    }
  }
482

483
 private:
484 485 486 487 488 489
  void CalculateMatrixDims(const ExecutionContext &ctx,
                           const std::vector<int64_t> &x_dims,
                           const std::vector<int64_t> &y_dims,
                           std::vector<int64_t> *x_bd_dims,
                           std::vector<int64_t> *y_bd_dims,
                           Tensor *out) const {
490
    if (x_dims.size() == 1) {
491
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
492
    } else if (x_dims.size() == 2) {
493 494
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
495 496
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
497
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
498 499 500
      }
    }
    if (y_dims.size() == 1) {
501
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
502
    } else if (y_dims.size() == 2) {
503 504
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
505 506
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
507
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
508 509 510
      }
    }

511
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
512
      auto out_dims = vectorize(out->dims());
513
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
514
        PADDLE_ENFORCE_EQ(
515 516
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
517 518 519 520 521
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
522 523 524 525
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
526
        (out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
527
      }
528
      out->Resize(phi::make_ddim((out_dims)));
529 530
    }
  }
531
};
532

533 534 535 536 537 538 539 540 541 542 543 544 545
template <typename T>
class MatMulGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
546

547 548 549
    const auto &dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    auto x = *ctx.Input<phi::DenseTensor>("X");
    auto y = *ctx.Input<phi::DenseTensor>("Y");
    auto dout =
        *ctx.Input<phi::DenseTensor>(paddle::framework::GradVarName("Out"));
    auto *dx =
        ctx.Output<phi::DenseTensor>(paddle::framework::GradVarName("X"));
    auto *dy =
        ctx.Output<phi::DenseTensor>(paddle::framework::GradVarName("Y"));

    bool transpose_x = ctx.HasAttr("transpose_X")
                           ? ctx.Attr<bool>("transpose_X")
                           : ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.HasAttr("transpose_Y")
                           ? ctx.Attr<bool>("transpose_Y")
                           : ctx.Attr<bool>("trans_y");

    ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    paddle::framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }
576

577 578 579 580 581 582 583
    paddle::framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }
584

585 586 587 588 589 590 591
    if (transpose_x && transpose_y) {
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
    } else if (transpose_x) {
      this->ExecuteMatMulGrad(ctx,
592 593
                              dev_ctx,
                              onednn_engine,
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
                              &y,
                              false,
                              false,
                              &dout,
                              true,
                              false,
                              dx);
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &x,
                              false,
                              false,
                              &dout,
                              false,
                              true,
                              dy);
    } else if (transpose_y) {
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &dout,
                              false,
                              false,
                              &y,
                              false,
                              true,
                              dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
    } else {
      this->ExecuteMatMulGrad(ctx,
                              dev_ctx,
                              onednn_engine,
                              &dout,
                              false,
                              false,
                              &y,
                              true,
                              false,
                              dx);
      this->ExecuteMatMulGrad(
          ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
    }
638

639 640 641 642 643 644 645 646 647 648
    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
        dx->set_mem_desc(x.mem_desc());
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
        dy->set_mem_desc(y.mem_desc());
649 650 651 652
      }
    }
  }

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
 private:
  void ExecuteMatMulGrad(const ExecutionContext &ctx,
                         const MKLDNNDeviceContext &dev_ctx,
                         const dnnl::engine &engine,
                         phi::DenseTensor *x,
                         bool trans_x,
                         bool is_fold_init_dims_x,
                         phi::DenseTensor *y,
                         bool trans_y,
                         bool is_fold_init_dims_y,
                         phi::DenseTensor *out) const {
    // gradient is calculated in a different way when broadcasting is used
    bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                        out->dims().size() == 2;

    Tensor x_combined, y_combined;
    if (!need_combine) {
      x_combined = *x;
      y_combined = *y;
    } else {
      x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                       : FoldFirstAndLastDims<T>(dev_ctx, x);
      y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                       : FoldFirstAndLastDims<T>(dev_ctx, y);
    }
678

679
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
680

681 682 683 684 685 686 687 688
    MatMulMKLDNNHandler<T, T, T> handler(engine,
                                         ctx.GetPlace(),
                                         &x_combined,
                                         trans_x,
                                         &y_combined,
                                         trans_y,
                                         out,
                                         alpha);
689

690 691 692
    const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
    const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
    const auto dst_memory_p = handler.AcquireDstMemory(out);
693

694
    auto matmul_p = handler.AcquireForwardPrimitive();
695

696 697 698 699
    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
700

701 702 703
    auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();
704

705 706
    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims())));
707
  }
708
};
709

710 711 712 713
template <typename T>
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
714 715
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
716

717 718
    auto *x = ctx.Input<phi::DenseTensor>("X");
    auto *y = ctx.Input<phi::DenseTensor>("Y");
719 720 721 722 723 724 725 726 727 728

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
729 730 731
      is_broadcast = !std::equal(x_dims.cbegin(),
                                 x_dims.cbegin() + x_dims.size() - 2,
                                 y_dims.cbegin());
732 733 734 735 736
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
737
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
738 739 740
      return;
    }

741 742 743
    auto *dout = ctx.Input<phi::DenseTensor>(GradVarName("Out"));
    auto *dx = ctx.Output<phi::DenseTensor>(GradVarName("X"));
    auto *dy = ctx.Output<phi::DenseTensor>(GradVarName("Y"));
744

745 746 747 748
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
749 750
    auto dout_dims = vectorize(dout->dims());

751 752 753 754 755 756 757 758
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
759 760 761 762 763 764 765 766

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

767 768
    CalculateGradMatrixDims(
        ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, &dx_bd_dims, &dy_bd_dims);
769 770

    if (trans_x && trans_y) {
771 772 773 774
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, y, y_dims, true, dout, dout_dims, true, &dx_tmp);
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, dout, dout_dims, true, x, x_dims, true, &dy_tmp);
775
    } else if (trans_x) {
776 777
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, y, y_dims, false, dout, dout_dims, true, &dx_tmp);
778 779 780 781 782 783 784 785
      ExecuteMatMulV2<T, T>(ctx,
                            onednn_engine,
                            x,
                            x_dims,
                            false,
                            dout,
                            dout_dims,
                            false,
786
                            &dy_tmp);
787
    } else if (trans_y) {
788 789 790 791 792 793 794 795
      ExecuteMatMulV2<T, T>(ctx,
                            onednn_engine,
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            false,
796 797 798
                            &dx_tmp);
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, dout, dout_dims, true, x, x_dims, false, &dy_tmp);
799
    } else {
800 801 802 803
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, dout, dout_dims, false, y, y_dims, true, &dx_tmp);
      ExecuteMatMulV2<T, T>(
          ctx, onednn_engine, x, x_dims, true, dout, dout_dims, false, &dy_tmp);
804 805 806
    }

    if (x_dims != dx_bd_dims) {
807 808 809 810 811 812
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dx_tmp,
                                   dx,
                                   x_dims,
813
                                   vectorize(x->dims()));
814 815 816 817
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
818 819 820 821 822 823
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dy_tmp,
                                   dy,
                                   y_dims,
824
                                   vectorize(y->dims()));
825 826 827 828
    } else {
      *dy = std::move(dy_tmp);
    }

829 830
    dx->Resize(x->dims());
    dy->Resize(y->dims());
831
  }
832 833

 private:
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
  void CalculateGradMatrixDims(const ExecutionContext &ctx,
                               Tensor *dx_tmp,
                               Tensor *dy_tmp,
                               const std::vector<int64_t> &dx_dims,
                               const std::vector<int64_t> &dy_dims,
                               std::vector<int64_t> *dx_bd_dims,
                               std::vector<int64_t> *dy_bd_dims) const {
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
          (*dx_bd_dims)[i] = dy_dims[i];
        } else {
          (*dy_bd_dims)[i] = dx_dims[i];
        }
      }
    }
850

851 852 853 854
    dx_tmp->Resize(phi::make_ddim((*dx_bd_dims)));
    dx_tmp->mutable_data<T>(ctx.GetPlace());
    dy_tmp->Resize(phi::make_ddim((*dy_bd_dims)));
    dy_tmp->mutable_data<T>(ctx.GetPlace());
855 856
  }

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
  void ReduceSumForMatmulGradOutput(
      const ExecutionContext &ctx,
      const MKLDNNDeviceContext &dev_ctx,
      const dnnl::engine onednn_engine,
      const Tensor *dx_tmp,
      Tensor *dx,
      const std::vector<int64_t> &dx_dims,
      const std::vector<int64_t> &squeezed_dims) const {
    phi::funcs::ReductionOneDNNHandler<T> handler(
        dnnl::algorithm::reduction_sum,
        0.0f,
        0.0f,
        onednn_engine,
        ctx.GetPlace(),
        dx_tmp,
        dx,
        dx_dims);
874

875 876
    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);
877

878 879
    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
880

881 882
    auto &astream = MKLDNNDeviceContext::tls().get_stream();
    auto reduction_p = handler.AcquireForwardPrimitive();
883

884 885
    reduction_p->execute(astream, reduction_args);
    astream.wait();
886

887
    dx->set_mem_desc(dst_memory_p->get_desc().reshape(squeezed_dims));
888 889
  }

890 891 892 893 894
  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t> &dims,
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
895 896
    }

897
    return new_dims;
898 899
  }

900 901 902 903
 private:
  MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
};
}  // anonymous namespace
904

905 906 907 908 909 910 911
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
912 913 914 915

REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
916 917
                   MatMulGradMKLDNNKernel<float>,
                   MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);
918

919 920 921
REGISTER_OP_KERNEL(matmul_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
922
                   MatMulV2MKLDNNKernel<float>,
923 924 925
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
926

927 928 929
REGISTER_OP_KERNEL(matmul_v2_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
930 931
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);