rnn_impl.py 34.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import copy

17
from paddle.fluid import layers, unique_name
18
from paddle.fluid.dygraph import Layer
19
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from paddle.fluid.layers.control_flow import StaticRNN

__all__ = ['BasicGRUUnit', 'basic_gru', 'BasicLSTMUnit', 'basic_lstm']


class BasicGRUUnit(Layer):
    """
    ****
    BasicGRUUnit class, using basic operators to build GRU
    The algorithm can be described as the equations below.

        .. math::
            u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u)

            r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r)

            m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    Args:
        name_scope(string) : The name scope used to identify parameters and biases
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
50
            If it is set to None or one attribute of ParamAttr, gru_unit will
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        dtype(string): data type used in this unit

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import BasicGRUUnit

            input_size = 128
            hidden_size = 256
            input = layers.data( name = "input", shape = [-1, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')

            gru_unit = BasicGRUUnit( "gru_unit", hidden_size )

            new_hidden = gru_unit( input, pre_hidden )

    """

77 78 79 80 81 82 83 84 85 86
    def __init__(
        self,
        name_scope,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        dtype='float32',
    ):
87
        super().__init__(name_scope, dtype)
88
        # reserve old school _full_name and _helper for static graph save load
89 90 91
        self._full_name = unique_name.generate(
            name_scope + "/" + self.__class__.__name__
        )
92
        self._helper = LayerObjectHelper(self._full_name)
93 94 95 96 97 98 99 100 101 102 103

        self._name = name_scope
        self._hiden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
        self._dtype = dtype

    def _build_once(self, input, pre_hidden):
        self._input_size = input.shape[-1]
104
        assert self._input_size > 0
105

106 107 108 109 110 111 112 113 114
        if self._param_attr is not None and self._param_attr.name is not None:
            gate_param_attr = copy.deepcopy(self._param_attr)
            candidate_param_attr = copy.deepcopy(self._param_attr)
            gate_param_attr.name += "_gate"
            candidate_param_attr.name += "_candidate"
        else:
            gate_param_attr = self._param_attr
            candidate_param_attr = self._param_attr

115
        self._gate_weight = self.create_parameter(
116
            attr=gate_param_attr,
117
            shape=[self._input_size + self._hiden_size, 2 * self._hiden_size],
118 119
            dtype=self._dtype,
        )
120 121

        self._candidate_weight = self.create_parameter(
122
            attr=candidate_param_attr,
123
            shape=[self._input_size + self._hiden_size, self._hiden_size],
124 125
            dtype=self._dtype,
        )
126

127 128 129 130 131 132 133 134 135
        if self._bias_attr is not None and self._bias_attr.name is not None:
            gate_bias_attr = copy.deepcopy(self._bias_attr)
            candidate_bias_attr = copy.deepcopy(self._bias_attr)
            gate_bias_attr.name += "_gate"
            candidate_bias_attr.name += "_candidate"
        else:
            gate_bias_attr = self._bias_attr
            candidate_bias_attr = self._bias_attr

136 137 138 139 140 141 142 143 144 145 146 147
        self._gate_bias = self.create_parameter(
            attr=gate_bias_attr,
            shape=[2 * self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
        self._candidate_bias = self.create_parameter(
            attr=candidate_bias_attr,
            shape=[self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
148 149 150 151 152 153 154 155 156 157 158 159 160

    def forward(self, input, pre_hidden):
        concat_input_hidden = layers.concat([input, pre_hidden], 1)

        gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight)

        gate_input = layers.elementwise_add(gate_input, self._gate_bias)

        gate_input = self._gate_activation(gate_input)
        r, u = layers.split(gate_input, num_or_sections=2, dim=1)

        r_hidden = r * pre_hidden

161 162 163
        candidate = layers.matmul(
            layers.concat([input, r_hidden], 1), self._candidate_weight
        )
164 165 166 167 168 169 170 171
        candidate = layers.elementwise_add(candidate, self._candidate_bias)

        c = self._activation(candidate)
        new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def basic_gru(
    input,
    init_hidden,
    hidden_size,
    num_layers=1,
    sequence_length=None,
    dropout_prob=0.0,
    bidirectional=False,
    batch_first=True,
    param_attr=None,
    bias_attr=None,
    gate_activation=None,
    activation=None,
    dtype='float32',
    name='basic_gru',
):
188
    r"""
T
tianshuo78520a 已提交
189
    GRU implementation using basic operator, supports multiple layers and bidirectional gru.
190 191 192 193 194 195 196 197 198 199 200

    .. math::
            u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u)

            r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r)

            m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    Args:
201 202
        input (Variable): GRU input tensor,
                       if batch_first = False, shape should be ( seq_len x batch_size x input_size )
203 204 205 206 207 208 209 210 211 212 213
                       if batch_first = True, shape should be ( batch_size x seq_len x hidden_size )
        init_hidden(Variable|None): The initial hidden state of the GRU
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to tensor with ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        hidden_size (int): Hidden size of the GRU
        num_layers (int): The total number of layers of the GRU
        sequence_length (Variabe|None): A Tensor (shape [batch_size]) stores each real length of each instance,
                        This tensor will be convert to a mask to mask the padding ids
                        If it's None means NO padding ids
214
        dropout_prob(float|0.0): Dropout prob, dropout ONLY works after rnn output of each layers,
215 216
                             NOT between time steps
        bidirectional (bool|False): If it is bidirectional
217 218 219 220 221
        batch_first (bool|True): The shape format of the input and output tensors. If true,
            the shape format should be :attr:`[batch_size, seq_len, hidden_size]`. If false,
            the shape format should be :attr:`[seq_len, batch_size, hidden_size]`. By default
            this function accepts input and emits output in batch-major form to be consistent
            with most of data format, though a bit less efficient because of extra transposes.
222 223 224 225 226 227 228
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
229
            If it is set to None or one attribute of ParamAttr, gru_unit will
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        dtype(string): data type used in this unit
        name(string): name used to identify parameters and biases

    Returns:
        rnn_out(Tensor),last_hidden(Tensor)
            - rnn_out is result of GRU hidden, with shape (seq_len x batch_size x hidden_size) \
              if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
            - last_hidden is the hidden state of the last step of GRU \
              shape is ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size),
              can be reshaped to a tensor with shape( num_layers x 2 x batch_size x hidden_size)

    Examples:
        .. code-block:: python
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import basic_gru

            batch_size = 20
            input_size = 128
            hidden_size = 256
            num_layers = 2
            dropout = 0.5
            bidirectional = True
            batch_first = False

            input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32')


            rnn_out, last_hidden = basic_gru( input, pre_hidden, hidden_size, num_layers = num_layers, \
                    sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
                    batch_first = batch_first)

    """

    fw_unit_list = []

    for i in range(num_layers):
        new_name = name + "_layers_" + str(i)
277 278 279 280 281 282 283 284 285 286
        if param_attr is not None and param_attr.name is not None:
            layer_param_attr = copy.deepcopy(param_attr)
            layer_param_attr.name += "_fw_w_" + str(i)
        else:
            layer_param_attr = param_attr
        if bias_attr is not None and bias_attr.name is not None:
            layer_bias_attr = copy.deepcopy(bias_attr)
            layer_bias_attr.name += "_fw_b_" + str(i)
        else:
            layer_bias_attr = bias_attr
287
        fw_unit_list.append(
288 289 290 291 292 293 294 295 296 297
            BasicGRUUnit(
                new_name,
                hidden_size,
                layer_param_attr,
                layer_bias_attr,
                gate_activation,
                activation,
                dtype,
            )
        )
298 299 300 301 302
    if bidirectional:
        bw_unit_list = []

        for i in range(num_layers):
            new_name = name + "_reverse_layers_" + str(i)
303 304 305 306 307 308 309 310 311 312 313
            if param_attr is not None and param_attr.name is not None:
                layer_param_attr = copy.deepcopy(param_attr)
                layer_param_attr.name += "_bw_w_" + str(i)
            else:
                layer_param_attr = param_attr
            if bias_attr is not None and bias_attr.name is not None:
                layer_bias_attr = copy.deepcopy(bias_attr)
                layer_bias_attr.name += "_bw_b_" + str(i)
            else:
                layer_bias_attr = bias_attr

314
            bw_unit_list.append(
315 316 317 318 319 320 321 322 323 324
                BasicGRUUnit(
                    new_name,
                    hidden_size,
                    layer_param_attr,
                    layer_bias_attr,
                    gate_activation,
                    activation,
                    dtype,
                )
            )
325 326 327 328 329 330 331

    if batch_first:
        input = layers.transpose(input, [1, 0, 2])

    mask = None
    if sequence_length:
        max_seq_len = layers.shape(input)[0]
332 333 334
        mask = layers.sequence_mask(
            sequence_length, maxlen=max_seq_len, dtype='float32'
        )
335 336 337 338 339 340 341
        mask = layers.transpose(mask, [1, 0])

    direc_num = 1
    if bidirectional:
        direc_num = 2
    if init_hidden:
        init_hidden = layers.reshape(
342 343
            init_hidden, shape=[num_layers, direc_num, -1, hidden_size]
        )
344

345 346 347
    def get_single_direction_output(
        rnn_input, unit_list, mask=None, direc_index=0
    ):
348 349 350 351 352 353 354 355 356 357 358
        rnn = StaticRNN()
        with rnn.step():
            step_input = rnn.step_input(rnn_input)

            if mask:
                step_mask = rnn.step_input(mask)

            for i in range(num_layers):
                if init_hidden:
                    pre_hidden = rnn.memory(init=init_hidden[i, direc_index])
                else:
359 360 361 362 363
                    pre_hidden = rnn.memory(
                        batch_ref=rnn_input,
                        shape=[-1, hidden_size],
                        ref_batch_dim_idx=1,
                    )
364 365 366 367 368

                new_hidden = unit_list[i](step_input, pre_hidden)

                if mask:
                    new_hidden = layers.elementwise_mul(
369 370 371 372
                        new_hidden, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_hidden, (step_mask - 1), axis=0
                    )
373 374 375 376 377
                rnn.update_memory(pre_hidden, new_hidden)

                rnn.step_output(new_hidden)

                step_input = new_hidden
378
                if dropout_prob is not None and dropout_prob > 0.0:
379 380
                    step_input = layers.dropout(
                        step_input,
381 382
                        dropout_prob=dropout_prob,
                    )
383 384 385 386 387 388 389 390 391 392 393 394 395

            rnn.step_output(step_input)

        rnn_out = rnn()

        last_hidden_array = []
        rnn_output = rnn_out[-1]
        for i in range(num_layers):
            last_hidden = rnn_out[i]
            last_hidden = last_hidden[-1]
            last_hidden_array.append(last_hidden)

        last_hidden_output = layers.concat(last_hidden_array, axis=0)
396 397 398
        last_hidden_output = layers.reshape(
            last_hidden_output, shape=[num_layers, -1, hidden_size]
        )
399 400 401 402

        return rnn_output, last_hidden_output
        # seq_len, batch_size, hidden_size

403 404 405
    fw_rnn_out, fw_last_hidden = get_single_direction_output(
        input, fw_unit_list, mask, direc_index=0
    )
406 407 408 409 410 411

    if bidirectional:
        bw_input = layers.reverse(input, axis=[0])
        bw_mask = None
        if mask:
            bw_mask = layers.reverse(mask, axis=[0])
412 413 414
        bw_rnn_out, bw_last_hidden = get_single_direction_output(
            bw_input, bw_unit_list, bw_mask, direc_index=1
        )
415 416 417 418 419 420 421

        bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0])

        rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2)
        last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1)

        last_hidden = layers.reshape(
422 423
            last_hidden, shape=[num_layers * direc_num, -1, hidden_size]
        )
424 425 426 427 428 429 430 431 432 433

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
        return rnn_out, last_hidden
    else:

        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden

        if batch_first:
434
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
435 436 437 438

        return rnn_out, last_hidden


439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
def basic_lstm(
    input,
    init_hidden,
    init_cell,
    hidden_size,
    num_layers=1,
    sequence_length=None,
    dropout_prob=0.0,
    bidirectional=False,
    batch_first=True,
    param_attr=None,
    bias_attr=None,
    gate_activation=None,
    activation=None,
    forget_bias=1.0,
    dtype='float32',
    name='basic_lstm',
):
457
    r"""
T
tianshuo78520a 已提交
458
    LSTM implementation using basic operators, supports multiple layers and bidirectional LSTM.
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

    .. math::
           i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)

           f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )

           o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)

           \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

           c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

           h_t &= o_t \odot tanh(c_t)

    Args:
474 475
        input (Variable): lstm input tensor,
                       if batch_first = False, shape should be ( seq_len x batch_size x input_size )
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                       if batch_first = True, shape should be ( batch_size x seq_len x hidden_size )
        init_hidden(Variable|None): The initial hidden state of the LSTM
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        init_cell(Variable|None): The initial hidden state of the LSTM
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        hidden_size (int): Hidden size of the LSTM
        num_layers (int): The total number of layers of the LSTM
        sequence_length (Variabe|None): A tensor (shape [batch_size]) stores each real length of each instance,
                        This tensor will be convert to a mask to mask the padding ids
                        If it's None means NO padding ids
492
        dropout_prob(float|0.0): Dropout prob, dropout ONLY work after rnn output of each layers,
493 494
                             NOT between time steps
        bidirectional (bool|False): If it is bidirectional
495 496 497 498 499
        batch_first (bool|True): The shape format of the input and output tensors. If true,
            the shape format should be :attr:`[batch_size, seq_len, hidden_size]`. If false,
            the shape format should be :attr:`[seq_len, batch_size, hidden_size]`. By default
            this function accepts input and emits output in batch-major form to be consistent
            with most of data format, though a bit less efficient because of extra transposes.
500 501 502 503 504 505 506
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
507
            If it is set to None or one attribute of ParamAttr, lstm_unit will
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias (float|1.0) : Forget bias used to compute the forget gate
        dtype(string): Data type used in this unit
        name(string): Name used to identify parameters and biases

    Returns:
        rnn_out(Tensor), last_hidden(Tensor), last_cell(Tensor)
            - rnn_out is the result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
              if is_bidirec set to True, it's shape will be ( seq_len x batch_sze x hidden_size*2)
            - last_hidden is the hidden state of the last step of LSTM \
              with shape ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size),
              and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size)  to use.
            - last_cell is the hidden state of the last step of LSTM \
              with shape ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size),
              and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size)  to use.

    Examples:
        .. code-block:: python
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import basic_lstm

            batch_size = 20
            input_size = 128
            hidden_size = 256
            num_layers = 2
            dropout = 0.5
            bidirectional = True
            batch_first = False

            input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32')
            sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32')

            rnn_out, last_hidden, last_cell = basic_lstm( input, pre_hidden, pre_cell, \
                    hidden_size, num_layers = num_layers, \
                    sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
                    batch_first = batch_first)

    """
    fw_unit_list = []

    for i in range(num_layers):
        new_name = name + "_layers_" + str(i)
560 561 562 563 564 565 566 567 568 569
        if param_attr is not None and param_attr.name is not None:
            layer_param_attr = copy.deepcopy(param_attr)
            layer_param_attr.name += "_fw_w_" + str(i)
        else:
            layer_param_attr = param_attr
        if bias_attr is not None and bias_attr.name is not None:
            layer_bias_attr = copy.deepcopy(bias_attr)
            layer_bias_attr.name += "_fw_b_" + str(i)
        else:
            layer_bias_attr = bias_attr
570
        fw_unit_list.append(
571 572 573 574 575 576 577 578 579 580 581
            BasicLSTMUnit(
                new_name,
                hidden_size,
                param_attr=layer_param_attr,
                bias_attr=layer_bias_attr,
                gate_activation=gate_activation,
                activation=activation,
                forget_bias=forget_bias,
                dtype=dtype,
            )
        )
582 583 584 585 586
    if bidirectional:
        bw_unit_list = []

        for i in range(num_layers):
            new_name = name + "_reverse_layers_" + str(i)
587 588 589 590 591 592 593 594 595 596
            if param_attr is not None and param_attr.name is not None:
                layer_param_attr = copy.deepcopy(param_attr)
                layer_param_attr.name += "_bw_w_" + str(i)
            else:
                layer_param_attr = param_attr
            if bias_attr is not None and bias_attr.name is not None:
                layer_bias_attr = copy.deepcopy(bias_attr)
                layer_bias_attr.name += "_bw_b_" + str(i)
            else:
                layer_bias_attr = param_attr
597
            bw_unit_list.append(
598 599 600 601 602 603 604 605 606 607 608
                BasicLSTMUnit(
                    new_name,
                    hidden_size,
                    param_attr=layer_param_attr,
                    bias_attr=layer_bias_attr,
                    gate_activation=gate_activation,
                    activation=activation,
                    forget_bias=forget_bias,
                    dtype=dtype,
                )
            )
609 610 611 612 613 614 615

    if batch_first:
        input = layers.transpose(input, [1, 0, 2])

    mask = None
    if sequence_length:
        max_seq_len = layers.shape(input)[0]
616 617 618
        mask = layers.sequence_mask(
            sequence_length, maxlen=max_seq_len, dtype='float32'
        )
619 620 621 622 623 624 625 626 627

        mask = layers.transpose(mask, [1, 0])

    direc_num = 1
    if bidirectional:
        direc_num = 2
        # convert to [num_layers, 2, batch_size, hidden_size]
    if init_hidden:
        init_hidden = layers.reshape(
628 629
            init_hidden, shape=[num_layers, direc_num, -1, hidden_size]
        )
630
        init_cell = layers.reshape(
631 632
            init_cell, shape=[num_layers, direc_num, -1, hidden_size]
        )
633 634

    # forward direction
635 636 637
    def get_single_direction_output(
        rnn_input, unit_list, mask=None, direc_index=0
    ):
638 639 640 641 642 643 644 645 646 647 648 649
        rnn = StaticRNN()
        with rnn.step():
            step_input = rnn.step_input(rnn_input)

            if mask:
                step_mask = rnn.step_input(mask)

            for i in range(num_layers):
                if init_hidden:
                    pre_hidden = rnn.memory(init=init_hidden[i, direc_index])
                    pre_cell = rnn.memory(init=init_cell[i, direc_index])
                else:
650 651 652 653 654 655
                    pre_hidden = rnn.memory(
                        batch_ref=rnn_input, shape=[-1, hidden_size]
                    )
                    pre_cell = rnn.memory(
                        batch_ref=rnn_input, shape=[-1, hidden_size]
                    )
656

657 658 659
                new_hidden, new_cell = unit_list[i](
                    step_input, pre_hidden, pre_cell
                )
660 661 662

                if mask:
                    new_hidden = layers.elementwise_mul(
663 664 665 666
                        new_hidden, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_hidden, (step_mask - 1), axis=0
                    )
667
                    new_cell = layers.elementwise_mul(
668 669 670 671
                        new_cell, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_cell, (step_mask - 1), axis=0
                    )
672 673 674 675 676 677 678 679

                rnn.update_memory(pre_hidden, new_hidden)
                rnn.update_memory(pre_cell, new_cell)

                rnn.step_output(new_hidden)
                rnn.step_output(new_cell)

                step_input = new_hidden
680
                if dropout_prob is not None and dropout_prob > 0.0:
681 682 683
                    step_input = layers.dropout(
                        step_input,
                        dropout_prob=dropout_prob,
684 685
                        dropout_implementation='upscale_in_train',
                    )
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

            rnn.step_output(step_input)

        rnn_out = rnn()

        last_hidden_array = []
        last_cell_array = []
        rnn_output = rnn_out[-1]
        for i in range(num_layers):
            last_hidden = rnn_out[i * 2]
            last_hidden = last_hidden[-1]
            last_hidden_array.append(last_hidden)
            last_cell = rnn_out[i * 2 + 1]
            last_cell = last_cell[-1]
            last_cell_array.append(last_cell)

        last_hidden_output = layers.concat(last_hidden_array, axis=0)
703 704 705
        last_hidden_output = layers.reshape(
            last_hidden_output, shape=[num_layers, -1, hidden_size]
        )
706
        last_cell_output = layers.concat(last_cell_array, axis=0)
707 708 709
        last_cell_output = layers.reshape(
            last_cell_output, shape=[num_layers, -1, hidden_size]
        )
710 711 712 713 714

        return rnn_output, last_hidden_output, last_cell_output
        # seq_len, batch_size, hidden_size

    fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
715 716
        input, fw_unit_list, mask, direc_index=0
    )
717 718 719 720 721 722 723

    if bidirectional:
        bw_input = layers.reverse(input, axis=[0])
        bw_mask = None
        if mask:
            bw_mask = layers.reverse(mask, axis=[0])
        bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
724 725
            bw_input, bw_unit_list, bw_mask, direc_index=1
        )
726 727 728 729 730 731

        bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0])

        rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2)
        last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1)
        last_hidden = layers.reshape(
732 733
            last_hidden, shape=[num_layers * direc_num, -1, hidden_size]
        )
734 735 736

        last_cell = layers.concat([fw_last_cell, bw_last_cell], axis=1)
        last_cell = layers.reshape(
737 738
            last_cell, shape=[num_layers * direc_num, -1, hidden_size]
        )
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
        return rnn_out, last_hidden, last_cell
    else:

        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden
        last_cell = fw_last_cell

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell


class BasicLSTMUnit(Layer):
756
    r"""
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    ****
    BasicLSTMUnit class, Using basic operator to build LSTM
    The algorithm can be described as the code below.

        .. math::

           i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)

           f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )

           o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)

           \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

           c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

           h_t &= o_t \odot tanh(c_t)

        - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
          of weights from the input gate to the input)
        - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
        - sigmoid is the logistic sigmoid function.
        - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
          and cell activation vectors, respectively, all of which have the same size as
          the cell output activation vector $h$.
        - The :math:`\odot` is the element-wise product of the vectors.
        - :math:`tanh` is the activation functions.
        - :math:`\\tilde{c_t}` is also called candidate hidden state,
          which is computed based on the current input and the previous hidden state.

    Args:
        name_scope(string) : The name scope used to identify parameter and bias name
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
797
            If it is set to None or one attribute of ParamAttr, lstm_unit will
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized as zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cells (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias(float|1.0): forget bias used when computing forget gate
        dtype(string): data type used in this unit

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import BasicLSTMUnit

            input_size = 128
            hidden_size = 256
            input = layers.data( name = "input", shape = [-1, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32')

            lstm_unit = BasicLSTMUnit( "gru_unit", hidden_size)

            new_hidden, new_cell = lstm_unit( input, pre_hidden, pre_cell )

    """

826 827 828 829 830 831 832 833 834 835 836
    def __init__(
        self,
        name_scope,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        forget_bias=1.0,
        dtype='float32',
    ):
837
        super().__init__(name_scope, dtype)
838
        # reserve old school _full_name and _helper for static graph save load
839 840 841
        self._full_name = unique_name.generate(
            name_scope + "/" + self.__class__.__name__
        )
842
        self._helper = LayerObjectHelper(self._full_name)
843 844 845 846 847 848 849

        self._name = name_scope
        self._hiden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._gate_activation = gate_activation or layers.sigmoid
        self._activation = activation or layers.tanh
850 851 852
        self._forget_bias = layers.fill_constant(
            [1], dtype=dtype, value=forget_bias
        )
853 854 855 856 857
        self._forget_bias.stop_gradient = False
        self._dtype = dtype

    def _build_once(self, input, pre_hidden, pre_cell):
        self._input_size = input.shape[-1]
858
        assert self._input_size > 0
859 860 861 862

        self._weight = self.create_parameter(
            attr=self._param_attr,
            shape=[self._input_size + self._hiden_size, 4 * self._hiden_size],
863 864
            dtype=self._dtype,
        )
865

866 867 868 869 870 871
        self._bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[4 * self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
872 873 874 875 876 877 878 879 880 881

    def forward(self, input, pre_hidden, pre_cell):
        concat_input_hidden = layers.concat([input, pre_hidden], 1)
        gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)

        gate_input = layers.elementwise_add(gate_input, self._bias)
        i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
        new_cell = layers.elementwise_add(
            layers.elementwise_mul(
                pre_cell,
882 883 884 885
                layers.sigmoid(layers.elementwise_add(f, self._forget_bias)),
            ),
            layers.elementwise_mul(layers.sigmoid(i), layers.tanh(j)),
        )
886 887 888
        new_hidden = layers.tanh(new_cell) * layers.sigmoid(o)

        return new_hidden, new_cell