cross_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/cross_op.h"
#include <memory>

namespace paddle {
namespace operators {

using framework::Tensor;
using framework::DDim;

class CrossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of CrossOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      platform::errors::InvalidArgument(
                          "Input(Index) of CrossOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of CrossOp should not be null."));

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
    auto dim = ctx->Attrs().Get<int>("dim");

    bool dims_match = CheckDims(x_dim, y_dim);
    PADDLE_ENFORCE_EQ(dims_match, true,
                      platform::errors::InvalidArgument(
                          "The 'shape' of Input(X) should be equal to "
                          "the 'shape' of Input(Y). But received "
                          "Input(X).dimensions = [%s], "
                          "Input(Y).dimensions = [%s]",
                          x_dim, y_dim));

    if (dim != kDefaultDim) {
      PADDLE_ENFORCE_EQ(
          dim < x_dim.size() && dim >= (0 - x_dim.size()), true,
          platform::errors::OutOfRange(
              "Attr(dim) is out of range, It's expected "
              "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
              x_dim.size(), x_dim.size() - 1, dim));
      if (dim < 0) {
        dim += x_dim.size();
      }
      PADDLE_ENFORCE_EQ(x_dim[dim] == 3 && y_dim[dim] == 3, true,
                        platform::errors::InvalidArgument(
                            "Input(X/Y).dims()[dim] should be equal to 3."
                            "But received Input(X/Y).dims()[dim] = %d.",
                            x_dim[dim]));
    }

    ctx->SetOutputDim("Out", x_dim);
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class CrossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) should be not null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Y"), true,
        platform::errors::InvalidArgument("Input(Y) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Y")), true,
                      platform::errors::InvalidArgument(
                          "Output(Y@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class CrossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) the input tensor.");
    AddInput("Y", "(Tensor) the second input tensor.");
    AddOutput("Out", "(Tensor), the output tensor.");
    AddAttr<int>("dim", "the dimension to take the cross-product in.")
        .SetDefault(kDefaultDim);
    AddComment(R"DOC(
    Returns the cross product of vectors in dimension dim of
    input and other. Input and other must have the same size,
    and the size of their dim dimension should be 3.
    If dim is not given, it defaults to the first dimension
    found with the size 3.
    )DOC");
  }
};

template <typename T>
class CrossGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("cross_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(cross, ops::CrossOp, ops::CrossOpMaker,
                  ops::CrossGradMaker<paddle::framework::OpDesc>,
                  ops::CrossGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(cross_grad, ops::CrossGradOp);
REGISTER_OP_CPU_KERNEL(
    cross, ops::CrossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CrossKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CrossKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CrossKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    cross_grad, ops::CrossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CrossGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CrossGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CrossGradKernel<paddle::platform::CPUDeviceContext, int64_t>);