pybind.cc 68.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
47
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
49
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
61

W
wopeizl 已提交
62
#ifndef _WIN32
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
64
#endif
65
#include "paddle/fluid/framework/data_type.h"
66 67
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
68
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/tensor_py.h"
70
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

79 80 81 82
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
83 84
#include "pybind11/stl.h"

85 86 87
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
88
DECLARE_bool(use_mkldnn);
89 90 91
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
92

Q
Qiao Longfei 已提交
93 94 95
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

96
namespace paddle {
97
namespace pybind {
98
bool IsCompiledWithCUDA() {
99
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
100 101 102 103 104 105
  return false;
#else
  return true;
#endif
}

106 107 108 109 110 111 112 113
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

114 115 116 117 118 119 120 121
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

122
bool IsCompiledWithBrpc() {
123
#ifndef PADDLE_WITH_DISTRIBUTE
124 125
  return false;
#endif
126 127 128 129 130 131

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
132 133
}

Y
update  
Yancey1989 已提交
134
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
135
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
136 137 138 139 140 141
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

152 153 154 155 156 157
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
158 159 160
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
161
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
162

163
  m.doc() = "C++ core of PaddlePaddle";
164

165 166 167 168
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

169
  BindException(&m);
Y
Yu Yang 已提交
170

171 172
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
173
  m.def(
S
sneaxiy 已提交
174
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
175 176 177 178
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
179 180 181
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
182 183 184
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
185
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
186

187
  m.def("_set_fuse_parameter_group_size",
188
        &paddle::framework::ir::SetFuseParameterGroupsSize);
189
  m.def("_set_fuse_parameter_memory_size",
190
        &paddle::framework::ir::SetFuseParameterMemorySize);
191

S
sneaxiy 已提交
192 193 194
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

195 196
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

197
  BindImperative(&m);
198

199
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
200
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
201 202
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
203
      .def("_get_dims",
204
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
205
      .def("_set_dims",
Q
qijun 已提交
206
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
207
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
208
           })
Y
yuyang18 已提交
209
      .def("_set_layout",
D
dzhwinter 已提交
210 211 212
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
213
      .def("_alloc_float",
D
dzhwinter 已提交
214
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
215
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
216
           })
Y
yuyang18 已提交
217
      .def("_alloc_float",
Y
Yu Yang 已提交
218
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
219
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
220
           })
Y
yuyang18 已提交
221
      .def("_alloc_int",
Y
Yu Yang 已提交
222
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
223
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
224
           })
Y
yuyang18 已提交
225
      .def("_alloc_int",
D
dzhwinter 已提交
226
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
227
             self.mutable_data<int>(place);
Q
qijun 已提交
228
           })
Y
yuyang18 已提交
229
      .def("_alloc_int",
C
chengduoZH 已提交
230 231 232
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
233
      .def("_alloc_float",
C
chengduoZH 已提交
234 235 236
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
237
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
238 239
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
240
      .def("set", PyCPUTensorSetFromArray<double>)
241
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
242
      .def("set", PyCPUTensorSetFromArray<bool>)
243
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
244
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
245
      .def("set", PyCPUTensorSetFromArray<int8_t>)
246
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
247 248
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
249
      .def("set", PyCUDATensorSetFromArray<double>)
250
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
251
      .def("set", PyCUDATensorSetFromArray<bool>)
252
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
253
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
254
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
255 256 257 258 259 260
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
261
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
262
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
263
#endif
264
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
265 266 267 268
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
269
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
270
      .def("_dtype", [](Tensor &self) { return self.type(); })
271 272 273 274 275 276
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
277

X
Xin Pan 已提交
278 279 280 281 282 283 284 285 286
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

287 288
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
289
    described by x.lod.
X
Xin Pan 已提交
290

Z
Zeng Jinle 已提交
291 292 293
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
294

Z
Zeng Jinle 已提交
295
    x.lod  = [[2, 3]]
296

Z
Zeng Jinle 已提交
297
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
298

Z
Zeng Jinle 已提交
299
    x.shape = [5, 2]
X
Xin Pan 已提交
300

Z
Zeng Jinle 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
318 319 320 321 322 323 324 325 326 327 328 329

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
330
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
331 332 333 334 335 336 337 338 339 340 341 342 343 344
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
345
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
346 347 348 349 350
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
351
      .def("set_lod",
352
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
353
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
354
             LoD new_lod;
355 356
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
357 358
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
359
             self.set_lod(new_lod);
S
sneaxiy 已提交
360 361 362 363 364 365
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
366 367 368 369 370 371 372 373 374 375

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
376
           )DOC")
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
392 393 394 395
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
396
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
397 398
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
399 400

           Args:
401
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
402 403 404 405 406 407 408 409 410 411

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
412
           )DOC")
413 414 415 416 417 418 419 420
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
421 422 423 424 425 426
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
427 428 429 430 431 432 433 434 435 436 437

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
438
           )DOC")
G
gongweibao 已提交
439
      // Set above comments of set_lod.
440 441 442 443 444 445 446 447
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
448 449 450 451 452
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
453
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
454 455 456 457 458 459 460 461 462 463 464

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
465 466 467 468 469 470 471 472 473 474 475 476
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
477 478 479 480 481 482 483 484 485 486 487

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
488 489 490 491 492 493 494
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
495
           )DOC")
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
514
      });
D
dangqingqing 已提交
515

Q
qijun 已提交
516 517 518 519 520 521 522 523 524 525 526
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
527 528
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
529 530
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
531 532 533 534 535 536 537 538 539
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
540
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
541
      .def("rows", [](SelectedRows &self) {
542 543 544 545 546
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
547
      });
Q
qijun 已提交
548

549
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
550 551 552

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
553
      .def(py::init<>())
554
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
555
      .def("set_int",
556 557
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
558 559 560 561 562 563 564
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
565
      .def("get_tensor",
566 567
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
568 569
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
570 571 572
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
573 574 575 576 577
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
578 579 580
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
581
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
582 583 584 585 586
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
587
#endif
Y
Refine  
Yu Yang 已提交
588 589 590 591 592
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
593
           py::return_value_policy::reference);
594

S
sneaxiy 已提交
595
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
596

S
sneaxiy 已提交
597 598 599 600
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
601

S
sneaxiy 已提交
602 603
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
604
      .def("push",
S
sneaxiy 已提交
605
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
606
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
607
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
608
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
609
           })
S
sneaxiy 已提交
610 611 612 613
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
614

S
sneaxiy 已提交
615
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
616 617
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
618
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
619 620 621 622
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
623
        py::return_value_policy::copy);
S
sneaxiy 已提交
624

S
sneaxiy 已提交
625
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

639
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
640 641 642 643 644 645
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
646 647
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
648
      .def("var",
649
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
650
             return self.Var(name);
Y
Yu Yang 已提交
651
           },
S
sneaxiy 已提交
652 653
           py::arg("name"),
           R"DOC(
654
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
655

656
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
657
           current scope, the variable would be created. Otherwise,
658
           return the existing variable.
S
sneaxiy 已提交
659 660

           Args:
661 662
               name (str): the variable name.

S
sneaxiy 已提交
663
           Returns:
664
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
665 666 667 668
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
669
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
670
           its parent scope. Return None if not found.
671

S
sneaxiy 已提交
672 673
           Args:
               name (str): the variable name.
674

S
sneaxiy 已提交
675
           Returns:
676
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
677
           )DOC",
678
           py::return_value_policy::reference)
679
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
680 681 682 683 684 685
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
686
           py::return_value_policy::reference)
S
sneaxiy 已提交
687 688 689
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
690 691
           )DOC")
      .def("_kids", &Scope::kids);
692

S
sneaxiy 已提交
693 694 695 696 697 698
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
699 700
        R"DOC(
        Create a new scope.
701

S
sneaxiy 已提交
702 703 704
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
705 706
        py::return_value_policy::reference);

Y
Yu Yang 已提交
707 708
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
709 710
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
711 712 713 714 715 716 717 718 719 720
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
721 722
    return ret_values;
  });
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
739 740 741 742 743 744 745
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
746 747 748
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
749

Y
Yu Yang 已提交
750
  m.def("prune", [](const ProgramDesc &origin,
751
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
752
    ProgramDesc prog_with_targets(origin);
753
    for (const auto &t : targets) {
754
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
755
    }
756
    proto::ProgramDesc pruned_desc;
757
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
758
    return new ProgramDesc(pruned_desc);
759
  });
760 761 762 763
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
764 765 766
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
767 768
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
769
  // clang-format off
Y
Yu Yang 已提交
770
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
771 772
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
773
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
774 775 776
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
777
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
778
                      -> paddle::platform::DeviceContext* {
779
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
780
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
781
#else
Q
qijun 已提交
782
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
783
#endif
C
chengduoZH 已提交
784 785 786 787 788 789 790 791 792 793 794
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
795
// clang-format on
P
peizhilin 已提交
796
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
797 798
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
799 800 801 802
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
803 804 805 806

    Examples:
        .. code-block:: python

807
          import paddle.fluid as fluid
L
lujun 已提交
808 809
          gpu_place = fluid.CUDAPlace(0)

810
        )DOC")
S
sneaxiy 已提交
811 812 813
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
838 839
             new (&self) platform::CUDAPlace(dev_id);
#else
840 841 842 843 844 845 846 847 848
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
849 850
#endif
           })
S
sneaxiy 已提交
851 852 853 854 855 856
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
857
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
858

859 860 861
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
862 863 864 865

    Examples:
        .. code-block:: python

866
          import paddle.fluid as fluid
L
lujun 已提交
867 868
          cpu_place = fluid.CPUPlace()

869
        )DOC")
870
      .def(py::init<>())
S
sneaxiy 已提交
871 872 873 874 875 876
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
877
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
878

879 880 881
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
882 883 884 885

    Examples:
        .. code-block:: python

886
          import paddle.fluid as fluid
L
lujun 已提交
887 888
          place = fluid.CUDAPinnedPlace()

889
        )DOC")
S
sneaxiy 已提交
890
      .def("__init__",
S
sneaxiy 已提交
891
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
892 893 894
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
895
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
896
           })
S
sneaxiy 已提交
897 898 899 900 901 902 903 904
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
905 906
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
907 908
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
909 910 911 912 913
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
914 915
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
916 917 918 919 920 921
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
922 923 924 925
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
926 927
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
928 929 930 931 932
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
933
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
934
             self = gpu_place;
C
chengduoZH 已提交
935 936
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
937 938
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
939
      });
Y
Yu Yang 已提交
940

Y
Yu Yang 已提交
941 942 943
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
944
                    proto::OpDesc desc;
Y
Yu Yang 已提交
945 946 947 948 949
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
950
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
951
                  })
952
      .def("run",
953
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
954 955 956
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
957
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
958 959 960 961 962
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
963 964 965 966 967 968 969
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
970 971
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
972
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
973
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
974 975 976 977
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
978

979 980 981
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
982
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
983
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
984
      .def("close", &Executor::Close)
985 986 987 988 989 990 991 992 993 994 995 996 997 998
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
999 1000 1001 1002 1003 1004 1005 1006
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1007 1008
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1009 1010
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1011
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1012 1013
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1014
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1015 1016
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1017
      });
S
sneaxiy 已提交
1018

D
dzhwinter 已提交
1019
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1020
  m.def("init_glog", framework::InitGLOG);
1021
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1022 1023
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1024

1025
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1026
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1027
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1028
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1029
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1030 1031 1032 1033 1034 1035
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1036

1037
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1038
  m.def("get_fetch_variable", framework::GetFetchVariable);
1039
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1040

X
Xin Pan 已提交
1041 1042
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1043 1044 1045 1046 1047
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1048

Y
Yu Yang 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1058 1059 1060 1061 1062
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1063

Z
Zeng Jinle 已提交
1064 1065 1066 1067
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1068 1069
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1080 1081 1082 1083 1084 1085
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1110

Y
Yu Yang 已提交
1111
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1112
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1113
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1114

P
peizhilin 已提交
1115
#ifndef _WIN32
D
dangqingqing 已提交
1116 1117 1118
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1119
#endif
P
peizhilin 已提交
1120
#endif
Y
Yu Yang 已提交
1121

1122 1123 1124 1125
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1126
      .value("kAll", platform::ProfilerState::kAll)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1140
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1141
  m.def("reset_profiler", platform::ResetProfiler);
1142
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1143 1144 1145
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1146

1147 1148
  m.def("size_of_dtype", framework::SizeOfType);

1149 1150
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1151
      .def("has", &ir::Pass::Has)
1152 1153 1154
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1155
           })
1156
      .def(
1157
          "set",
1158 1159 1160
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1161 1162
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1163 1164
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1165
        self.Apply(graph.get());
F
flame 已提交
1166
      });
1167

X
fix  
Xin Pan 已提交
1168 1169
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1184
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1185

Y
yuyang18 已提交
1186
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1187 1188 1189 1190
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1191 1192 1193
    Examples:
        .. code-block:: python

1194
          import paddle.fluid as fluid
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1205 1206 1207
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1208 1209
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1210 1211
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1212 1213
        )DOC");

Y
yuyang18 已提交
1214
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1215 1216 1217 1218 1219
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1230
      .def_property(
1231 1232 1233 1234
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1235 1236 1237 1238
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1239 1240 1241 1242 1243
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1244 1245 1246
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1247 1248
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1249 1250 1251 1252 1253 1254 1255
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1256 1257 1258 1259
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1260 1261
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1262 1263 1264 1265 1266 1267

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1268
              )DOC")
Q
Qiao Longfei 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1280 1281 1282 1283 1284
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1285

Y
yuyang18 已提交
1286
  exec_strategy.def_property(
Y
yuyang18 已提交
1287 1288 1289 1290 1291 1292 1293
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1294 1295
      });

C
chengduo 已提交
1296 1297 1298 1299
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1300 1301 1302
    Examples:
        .. code-block:: python

F
flame 已提交
1303 1304 1305
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1306
)DOC");
Y
yuyang18 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1323
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1324
            self.reduce_ = strategy;
C
chengduo 已提交
1325
          },
C
chengduo 已提交
1326 1327 1328 1329 1330 1331 1332
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1333 1334 1335 1336 1337 1338 1339 1340

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1341 1342 1343 1344 1345
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1346
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finalized.");
Y
yuyang18 已提交
1347
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1348
          },
C
chengduo 已提交
1349 1350 1351 1352 1353
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1354 1355 1356 1357 1358

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1387
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1402
                   )DOC")
Y
yuyang18 已提交
1403 1404 1405 1406
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1407
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1408
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1409
          },
C
chengduo 已提交
1410
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1411 1412 1413 1414 1415 1416 1417 1418
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1419 1420
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1421
                    )DOC")
S
sneaxiy 已提交
1422 1423 1424 1425 1426 1427
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1428
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1429 1430
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1431 1432
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1433 1434 1435 1436 1437 1438 1439 1440

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1441 1442 1443 1444 1445 1446
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1447
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1448 1449
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1450 1451
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1452 1453 1454 1455 1456 1457 1458 1459

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1460 1461 1462 1463
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1464 1465 1466
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1467 1468
            self.num_trainers_ = num_trainers;
          })
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1481 1482 1483 1484 1485 1486
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1487
      .def_property("use_hierarchical_allreduce",
1488 1489 1490 1491 1492 1493
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1494
      .def_property("hierarchical_allreduce_inter_nranks",
1495 1496 1497 1498 1499 1500 1501
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1502 1503 1504 1505 1506 1507
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1508
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1509 1510 1511
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1589 1590
      .def_property(
          "memory_optimize",
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1610
                consumption, set to True to enable it.
1611

1612 1613 1614 1615
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1616 1617 1618
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1619 1620 1621 1622 1623 1624 1625 1626 1627
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1628 1629 1630
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1631
      .def_property(
D
dzhwinter 已提交
1632 1633 1634
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1635 1636 1637 1638
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1639 1640 1641 1642 1643 1644 1645
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1646 1647 1648 1649
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1650 1651 1652 1653 1654 1655 1656 1657 1658
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1659
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1660
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1661 1662 1663 1664 1665
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1666 1667

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1668
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1669
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1670
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1671 1672 1673 1674
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1675 1676 1677 1678 1679
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1680 1681 1682
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1683 1684 1685 1686
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1687
      .def("run", [](ParallelExecutor &self,
1688
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1689
        pybind11::gil_scoped_release release;
1690
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1691
      });
Y
Yu Yang 已提交
1692

D
dongdaxiang 已提交
1693
  BindFleetWrapper(&m);
W
wopeizl 已提交
1694
#ifndef _WIN32
D
dongdaxiang 已提交
1695
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1696
#endif
F
flame 已提交
1697 1698
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1699
  BindInferenceApi(&m);
1700
  BindDataset(&m);
1701 1702 1703
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1704
}
1705
}  // namespace pybind
1706
}  // namespace paddle