io.py 84.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
H
hong 已提交
25 26
import numpy as np

27
import paddle
C
Chen Weihang 已提交
28 29

# ddeprecated module import
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
34
    program_guard, dygraph_not_support
35 36
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
37
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
38
from paddle.fluid.compiler import CompiledProgram
39
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
40
from . import reader
41
from . import unique_name
S
sneaxiy 已提交
42
from .reader import *
43 44
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
45
from . import core
46
from .. import compat as cpt
47

48 49
batch = paddle.batch

50
__all__ = [
51 52 53 54 55 56 57 58 59 60 61 62 63
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
64 65
    'get_program_parameter',
    'get_program_persistable_vars',
66
] + reader.__all__
67

68 69
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
70

71 72

def is_parameter(var):
F
fengjiayi 已提交
73 74
    """
    Check whether the given variable is an instance of Parameter.
75 76

    Args:
F
fengjiayi 已提交
77
        var(Variable): The variable to be checked.
78 79

    Returns:
F
fengjiayi 已提交
80 81 82 83 84 85
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

86
            import paddle.fluid as fluid
F
fengjiayi 已提交
87 88
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
89
    """
90 91 92 93
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

107
            import paddle.fluid as fluid
108
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
109 110
            res = fluid.io.is_persistable(param)
    """
111
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
112 113
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
114
        return False
115 116 117
    return var.persistable


H
hong 已提交
118
def is_belong_to_optimizer(var):
119
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
120 121 122
        return is_persistable(var)

    return False
H
hong 已提交
123 124


125
@dygraph_not_support
H
hong 已提交
126 127
def get_program_parameter(program):
    """
128 129
    :api_attr: Static Graph

H
hong 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


150
@dygraph_not_support
H
hong 已提交
151 152
def get_program_persistable_vars(program):
    """
153 154
    :api_attr: Static Graph

H
hong 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


175 176
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
192 193


194
@signature_safe_contextmanager
H
hong 已提交
195 196 197 198 199 200 201
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
202 203
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
204 205


C
chengduo 已提交
206 207 208 209 210 211
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
212 213 214
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
215 216 217
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
218 219 220
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
221 222 223
    return main_program


C
Chen Weihang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
def _feed_fetch_check(feeded_var_names, target_vars,
                      export_for_deployment=True):
    if isinstance(feeded_var_names, six.string_types):
        feeded_var_names = [feeded_var_names]
    elif export_for_deployment:
        if len(feeded_var_names) > 0:
            # TODO(paddle-dev): polish these code blocks
            if not (bool(feeded_var_names) and all(
                    isinstance(name, six.string_types)
                    for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")

    if isinstance(target_vars, Variable):
        target_vars = [target_vars]
    elif export_for_deployment:
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")


def _auc_states_check_and_remind(main_program):
    all_ops = main_program.global_block().ops
    for op in all_ops:
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break


def _update_target_vars(target_vars, main_program):
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
        for i, var in enumerate(target_vars):
            if isinstance(var, Variable):
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
        target_vars = uniq_target_vars

    return target_vars


def _get_train_program(feeded_var_names, target_vars, main_program):
    # 1. feed & fetch check
    _feed_fetch_check(feeded_var_names, target_vars, False)

    # 2. remind user to set auc_states to zeros if the program contains auc op
    _auc_states_check_and_remind(main_program)

    # 3. update input target_vars to fix bug
    target_vars = _update_target_vars(target_vars, main_program)

    return main_program


def _serialization(main_program, model_basename):
    with open(model_basename, "wb") as f:
        f.write(main_program.desc.serialize_to_string())


# NOTE: This function is not exposed to users, only used for paddle2onnx now
@dygraph_not_support
def get_inference_program(feeded_var_names, target_vars, main_program):
    # 1. feed & fetch check
    _feed_fetch_check(feeded_var_names, target_vars)

    # 2. remind user to set auc_states to zeros if the program contains auc op
    _auc_states_check_and_remind(main_program)

    # 3. update input target_vars to fix bug
    target_vars = _update_target_vars(target_vars, main_program)

    # 4. build inference program
    main_program = main_program.clone()
    global_block = main_program.global_block()
    need_to_remove_op_index = []
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            need_to_remove_op_index.append(i)

    for index in need_to_remove_op_index[::-1]:
        global_block._remove_op(index)

    main_program.desc.flush()

    main_program = main_program._prune_with_input(
        feeded_var_names=feeded_var_names, targets=target_vars)
    main_program = main_program._inference_optimize(prune_read_op=True)
    fetch_var_names = [v.name for v in target_vars]

    prepend_feed_ops(main_program, feeded_var_names)
    append_fetch_ops(main_program, fetch_var_names)

    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(main_program.desc)

    return main_program


331
@dygraph_not_support
332 333 334 335 336
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
337
              filename=None):
338
    """
339 340
    :api_attr: Static Graph

341
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
342

343
    There are two ways to specify the variables to be saved: set variables in
344 345
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
346

347
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
348
    If you prefer to save variables in separate files in the `dirname` folder,
349
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
350
    use `filename` to specify it.
351

F
fengjiayi 已提交
352 353
    Args:
        executor(Executor): The executor to run for saving variables.
354 355
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
356
        main_program(Program, optional): The program whose variables will be saved.
357
                                    If it is None, the default main program will
F
fengjiayi 已提交
358 359
                                    be used automatically.
                                    Default: None
360 361 362
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
363
                                       `predicate(variable) == True`.
364 365
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
366
                                 use `filename` to specify it. Otherwise, let `filename` be None.
367
                                 Default: None
F
fengjiayi 已提交
368 369

    Returns:
370 371
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
372 373 374 375 376 377 378

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

379
            import paddle.fluid as fluid
380

381 382 383 384 385 386 387 388 389 390 391
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
392

393
            # The first usage: use `vars` to set the saved variables.
394 395
            var_list = [w, b]
            path = "./my_paddle_vars"
396
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
397 398 399 400 401 402 403 404 405 406
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
407
    """
408 409 410 411
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
412
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
413

414
    if vars is None:
415
        return save_vars(
416
            executor,
417
            main_program=main_program,
418
            dirname=dirname,
419
            vars=list(filter(predicate, main_program.list_vars())),
420
            filename=filename)
421
    else:
422
        params_var_name = unique_name.generate("saved_params")
423 424 425 426 427 428 429
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

430 431
        save_program = Program()
        save_block = save_program.global_block()
432 433

        save_var_map = {}
434
        for each_var in vars:
435 436 437
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
438
            new_var = _clone_var_in_block_(save_block, each_var)
439 440 441
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
442 443 444 445
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
446
                    attrs={'file_path': os.path.normpath(save_file_path)})
447 448 449
            else:
                save_var_map[new_var.name] = new_var

450
        if filename is not None or save_to_memory:
451 452 453 454
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

455 456 457 458 459 460 461
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
462
            save_block.append_op(
463 464
                type='save_combine',
                inputs={'X': save_var_list},
465 466 467 468 469
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
470

471
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
472 473 474
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
475
        executor.run(save_program)
476 477
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
478 479


480
@dygraph_not_support
481
def save_params(executor, dirname, main_program=None, filename=None):
482
    """
483 484
    :api_attr: Static Graph

G
guofei 已提交
485
    This operator saves all parameters from the :code:`main_program` to
486
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
487
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
488

G
guofei 已提交
489 490 491
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
492 493
    the file name.

494
    Note:
G
guofei 已提交
495
        Some variables are not Parameter while they are necessary for
496
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
497 498
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
499 500 501
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
502 503
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
504 505

    Args:
506
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
507
                            refer to :ref:`api_guide_executor_en`.
508 509
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
510
        main_program(Program, optional): The program whose parameters will be
511 512
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
513 514 515 516 517 518 519
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
520 521

    Returns:
522 523
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
524 525 526 527

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
528
            import paddle.fluid as fluid
529

G
guofei 已提交
530 531 532 533 534
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
535

G
guofei 已提交
536 537
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
538

F
fengjiayi 已提交
539
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
540 541
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
542 543
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
544
    """
545
    return save_vars(
546 547
        executor,
        dirname=dirname,
548
        main_program=main_program,
549
        vars=None,
550
        predicate=is_parameter,
551
        filename=filename)
552 553


554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

576
            import paddle.fluid as fluid
577 578 579 580 581 582 583 584 585 586
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
587
        receive params on pserver through rpc.
588 589 590 591 592 593 594 595 596 597
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
598 599 600 601 602 603 604
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
605 606 607

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
608
                slice = optimizer.slice
609 610 611
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
612 613 614
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
615 616
                endpoints[index] = endpoint

T
tangwei12 已提交
617 618 619 620 621
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

622
            block.append_op(
T
tangwei12 已提交
623 624 625 626 627 628 629 630 631 632 633
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
663 664
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
665 666 667 668 669 670
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
671
        raise TypeError("'main_program' should be an instance of Program.")
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


705
@dygraph_not_support
706
def save_persistables(executor, dirname, main_program=None, filename=None):
707
    """
708 709
    :api_attr: Static Graph

G
guofei 已提交
710 711 712
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
713 714
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
715

G
guofei 已提交
716
    The :code:`dirname` is used to specify the folder where persistable variables
717
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
718 719
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
720 721 722

    Args:
        executor(Executor): The executor to run for saving persistable variables.
723
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
724
                            more details.
725

726 727 728
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
729 730
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
731
                                         If it is None, the default main program will
G
guofei 已提交
732 733 734 735 736
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
737 738

    Returns:
739 740
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
741 742 743 744

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
745
            import paddle.fluid as fluid
746

G
guofei 已提交
747 748 749 750 751
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
752

G
guofei 已提交
753 754 755
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
756
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
757 758
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
759
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
760 761
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
762
    """
763
    if main_program and main_program._is_distributed:
764
        return _save_distributed_persistables(
765 766
            executor, dirname=dirname, main_program=main_program)
    else:
767
        return save_vars(
768 769 770 771 772 773
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
774 775


776 777 778 779 780
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
781
              filename=None):
782
    """
783 784
    :api_attr: Static Graph

785
    This API loads variables from files by executor.
F
fengjiayi 已提交
786

787
    There are two ways to specify the variables to be loaded: the first way, set
788 789
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
790
    The first way has a higher priority.
F
fengjiayi 已提交
791

792
    The `dirname` is used to specify the folder where to load variables.
793
    If variables were saved in separate files in the folder `dirname`,
794
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
795
    use `filename` to specify it.
796

F
fengjiayi 已提交
797 798
    Args:
        executor(Executor): The executor to run for loading variables.
799 800
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
801
                                    If it is None, the default main program will
F
fengjiayi 已提交
802 803
                                    be used automatically.
                                    Default: None
804
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
805
                                   Default: None
806
        predicate(function, optional): The function selects variables that make
807 808 809 810 811
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
812 813 814 815 816 817 818 819 820 821

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

822
            import paddle.fluid as fluid
823

824 825 826 827 828 829 830 831 832 833 834
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
835

836 837 838 839 840 841 842 843 844 845 846
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
847
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
848 849 850
            def name_has_fc(var):
                res = "fc" in var.name
                return res
851 852 853
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
854
                               vars=None, predicate=name_has_fc)
855 856
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
857

858
    """
859 860 861 862 863
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
864

865
    if vars is None:
866
        if main_program is None:
Y
Yu Yang 已提交
867
            main_program = default_main_program()
868
        if not isinstance(main_program, Program):
869 870 871
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
872 873 874

        load_vars(
            executor,
875
            dirname=dirname,
T
tangwei12 已提交
876
            main_program=main_program,
877
            vars=list(filter(predicate, main_program.list_vars())),
878
            filename=filename)
879 880 881
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
882

883 884
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
885

886
        if not isinstance(main_program, Program):
887 888 889
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
890

T
tangwei12 已提交
891
        # save origin param shape
H
hong 已提交
892
        orig_para_shape = {}
893
        load_var_map = {}
894 895 896 897

        check_vars = []
        sparse_vars = []

898 899
        for each_var in vars:
            assert isinstance(each_var, Variable)
900

T
tangwei12 已提交
901 902
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
903 904

            if isinstance(each_var, Parameter):
905 906
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
907 908 909 910 911

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

912
            new_var = _clone_var_in_block_(load_block, each_var)
913 914
            check_vars.append(each_var)

915
            if filename is None:
916 917 918 919
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
920 921 922 923
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
924
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
925 926 927
            else:
                load_var_map[new_var.name] = new_var

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
                raise ValueError("SelectedRows var {} can not find at {}".
                                 format(new_var.name, var_path))

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
                    slice = load_block.create_var(
                        name=block,
                        type=new_var.type,
                        shape=new_var.shape,
                        dtype=new_var.dtype,
                        persistable=False)
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
                    load_block.append_op(
                        type='load',
                        inputs={},
                        outputs={'Out': [slice]},
                        attrs={'file_path': file_path})

                load_block.append_op(
                    type='lookup_sparse_table_merge',
                    inputs={'X': slices},
                    outputs={'Out': new_var},
                    attrs={})

979
        if filename is not None:
980 981 982 983
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

984 985 986
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

987
            load_block.append_op(
988
                type='load_combine',
989
                inputs={},
990
                outputs={"Out": load_var_list},
991 992 993 994
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
995 996
        executor.run(load_prog)

T
tangwei12 已提交
997
        # check var shape
998
        for each_var in check_vars:
H
hong 已提交
999 1000 1001 1002 1003
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
1004
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
1005 1006 1007
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
1008
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
1009 1010 1011
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

1012

1013
@dygraph_not_support
1014
def load_params(executor, dirname, main_program=None, filename=None):
1015
    """
1016 1017
    :api_attr: Static Graph

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
1037 1038

    Args:
1039 1040
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1041
        dirname(str): The directory path.
1042 1043 1044 1045 1046 1047 1048 1049
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
1050 1051 1052 1053 1054 1055 1056

    Returns:
        None

    Examples:
        .. code-block:: python

1057
            import paddle.fluid as fluid
1058

F
fengjiayi 已提交
1059 1060 1061
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1062
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1063
                                main_program=None)
1064 1065
    """
    load_vars(
1066 1067 1068
        executor,
        dirname=dirname,
        main_program=main_program,
1069
        predicate=is_parameter,
1070
        filename=filename)
1071 1072


1073
@dygraph_not_support
1074
def load_persistables(executor, dirname, main_program=None, filename=None):
1075
    """
1076 1077
    :api_attr: Static Graph
    
1078 1079
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1080
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1081

1082 1083 1084 1085
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1086 1087

    Args:
1088 1089
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1090
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1091
        main_program(Program, optional): The program whose persistable variables will
1092 1093 1094 1095 1096 1097 1098
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1099 1100 1101 1102 1103 1104 1105

    Returns:
        None

    Examples:
        .. code-block:: python

1106
            import paddle.fluid as fluid
1107

F
fengjiayi 已提交
1108 1109 1110
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1111
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1112
                                       main_program=None)
1113
    """
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1145
            import paddle.fluid as fluid
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
1179 1180 1181 1182 1183 1184 1185 1186
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1209
        raise TypeError("'main_program' should be an instance of Program.")
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1224 1225


1226 1227 1228
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1229 1230 1231
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1232 1233
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1234 1235 1236
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1237

1238
    for i, name in enumerate(feed_target_names):
1239 1240 1241 1242 1243 1244 1245
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
                format(
                    i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1246
        out = global_block.var(name)
W
Wu Yi 已提交
1247
        global_block._prepend_op(
K
Kexin Zhao 已提交
1248 1249
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1250
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1251 1252 1253
            attrs={'col': i})


1254 1255 1256
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1257 1258
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1259 1260 1261
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1262

1263
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1264 1265 1266 1267 1268 1269 1270
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1271
@dygraph_not_support
1272 1273 1274 1275
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1276
                         main_program=None,
1277
                         model_filename=None,
1278
                         params_filename=None,
T
tangwei12 已提交
1279 1280
                         export_for_deployment=True,
                         program_only=False):
1281
    """
1282 1283
    :api_attr: Static Graph

F
fengjiayi 已提交
1284
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1285
    and then save it and all related parameters to given `dirname` .
1286
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1287 1288
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1289

G
guofei 已提交
1290
    Note:
1291
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1292
        structure and parameters are going to be saved. If you would like to save params of
1293
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1294
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1295 1296 1297

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1298
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1299
                                     data during inference.
1300
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1301
                                     inference results.
1302
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1303 1304
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1305
                                         build the inference model. If is set None,
G
guofei 已提交
1306 1307 1308
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1309
                                       itself. If is set None, a default filename
G
guofei 已提交
1310 1311
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1312
                                        If it is set None, parameters will be saved
G
guofei 已提交
1313
                                        in separate files .
X
Xin Pan 已提交
1314 1315 1316 1317 1318
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1319
                                     Default: True.
1320
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1321 1322
                                      save params of Program.
                                      Default: False.
1323

F
fengjiayi 已提交
1324
    Returns:
G
guofei 已提交
1325 1326 1327 1328
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1329 1330

    Raises:
G
guofei 已提交
1331 1332
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1333 1334 1335

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1336

1337 1338
            import paddle.fluid as fluid

F
fengjiayi 已提交
1339 1340
            path = "./infer_model"

T
tianshuo78520a 已提交
1341
            # User defined network, here a softmax regession example
G
guofei 已提交
1342 1343
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1361
            # In this example, the save_inference_mode inference will prune the default
1362
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1363
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1364
            # and parameters are going to be saved in separate files under folder
1365
            # "./infer_model".
1366 1367

    """
C
Chen Weihang 已提交
1368
    # 1. get main program
C
chengduo 已提交
1369
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1370

C
Chen Weihang 已提交
1371 1372 1373 1374 1375
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
    origin_program = main_program.clone()
1376

C
Chen Weihang 已提交
1377
    # 2. dirname check & create
1378
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1379
    save_dirname = dirname
1380
    try:
L
lujun 已提交
1381 1382
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1383 1384 1385 1386
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

C
Chen Weihang 已提交
1387
    # 3. model_filename check & create
X
Xin Pan 已提交
1388 1389 1390 1391
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1392
    model_basename = os.path.join(save_dirname, model_basename)
1393

C
Chen Weihang 已提交
1394
    # 4. get & serialize program
X
Xin Pan 已提交
1395
    if export_for_deployment:
C
Chen Weihang 已提交
1396 1397 1398
        main_program = get_inference_program(feeded_var_names, target_vars,
                                             main_program)
        _serialization(main_program, model_basename)
X
Xin Pan 已提交
1399 1400 1401
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
C
Chen Weihang 已提交
1402 1403 1404
        main_program = _get_train_program(feeded_var_names, target_vars,
                                          main_program)
        _serialization(main_program, model_basename + ".main_program")
T
tangwei12 已提交
1405

C
Chen Weihang 已提交
1406 1407
    # 5. get target var_name list & judge whether serialize program only
    target_var_name_list = [var.name for var in target_vars]
T
tangwei12 已提交
1408 1409 1410 1411 1412 1413
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

C
Chen Weihang 已提交
1414
    # 6. save persistables
1415 1416
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1417 1418
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1419

L
lujun 已提交
1420
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1421
    return target_var_name_list
X
fix  
Xin Pan 已提交
1422

1423

1424
@dygraph_not_support
1425 1426 1427
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1428 1429
                         params_filename=None,
                         pserver_endpoints=None):
1430
    """
1431 1432
    :api_attr: Static Graph

1433 1434 1435
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1436
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1437

F
fengjiayi 已提交
1438
    Args:
1439 1440 1441
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1442
        executor(Executor): The executor to run for loading inference model.
1443
                            See :ref:`api_guide_executor_en` for more details about it.
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1455 1456 1457 1458

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1459
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1460 1461

    Returns:
1462
        list: The return of this API is a list with three elements:
1463
        (program, feed_target_names, fetch_targets). The `program` is a
1464 1465 1466 1467 1468
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1469 1470 1471 1472 1473 1474 1475

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1476 1477
            import paddle.fluid as fluid
            import numpy as np
1478 1479

            # Build the model
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1491 1492

            # Save the inference model
F
fengjiayi 已提交
1493
            path = "./infer_model"
1494 1495
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1496 1497 1498

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1499 1500
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1501
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1502 1503 1504 1505
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1506 1507 1508
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1509
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1510
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1511 1512
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1513
                                              pserver_endpoints=endpoints))
1514

1515
            # In this example, the inference program was saved in the file
1516
            # "./infer_model/__model__" and parameters were saved in
1517 1518 1519 1520
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1521
    """
1522 1523 1524 1525
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1526
            raise ValueError("There is no directory named '%s'" % dirname)
1527

1528 1529
        if model_filename is None:
            model_filename = '__model__'
1530

1531 1532
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1548

1549
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1550
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1551 1552 1553
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1554
    load_persistables(executor, load_dirname, program, params_filename)
1555

T
tangwei12 已提交
1556
    if pserver_endpoints:
T
tangwei12 已提交
1557
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1558

1559 1560
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1561 1562 1563 1564 1565
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1566 1567


T
tangwei12 已提交
1568 1569 1570
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1571 1572
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1573
    program._sync_with_cpp()
T
tangwei12 已提交
1574
    return program
T
tangwei12 已提交
1575 1576


X
xuwei06 已提交
1577 1578
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1590

F
fengjiayi 已提交
1591 1592
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1593

1594
            import paddle.fluid as fluid
F
fengjiayi 已提交
1595 1596 1597
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1598

X
xuwei06 已提交
1599
    """
1600
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1601

X
xuwei06 已提交
1602 1603 1604 1605 1606 1607 1608 1609
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1610
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1611

F
fengjiayi 已提交
1612 1613 1614 1615 1616 1617 1618
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1619

F
fengjiayi 已提交
1620 1621
    Returns:
        numpy.array: The parameter's values.
1622

F
fengjiayi 已提交
1623 1624 1625
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1626
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1627
                        given program but it is not a Parameter.
1628

F
fengjiayi 已提交
1629 1630 1631
    Examples:
        .. code-block:: python

1632
            import paddle.fluid as fluid
F
fengjiayi 已提交
1633 1634
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1635 1636
    """
    if program is None:
Y
Yu Yang 已提交
1637
        program = default_main_program()
X
xuwei06 已提交
1638 1639
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1664
                        var_desc.type() == core.VarDesc.VarType.READER:
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1703
                        var_desc.type() == core.VarDesc.VarType.READER:
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1717 1718


1719
@dygraph_not_support
H
hong 已提交
1720 1721
def save(program, model_path):
    """
1722 1723
    :api_attr: Static Graph

H
hong 已提交
1724 1725 1726 1727 1728
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1729

H
hong 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1749
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1750

1751 1752 1753 1754
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1755 1756 1757 1758
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1759
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1760 1761
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1762
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1763 1764 1765 1766

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1767 1768
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1769
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1780
@dygraph_not_support
H
hong 已提交
1781
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1782
    """
1783 1784
    :api_attr: Static Graph

H
hong 已提交
1785
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1786
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1787

1788 1789
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1790 1791
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1792
    Args:
1793 1794
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1795
        executor(Executor, optional): The executor used for initialize the parameter
1796
                                      When startup program is not run.
1797 1798
        var_list(list, optional): The variable list to load single model file saved with
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1799
                                  Default: None
H
hong 已提交
1800 1801 1802

    Returns:
        None
1803

H
hong 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1816 1817
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1831
        _logger.debug(
H
hong 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1863
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1879
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
1892 1893 1894
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
1895 1896

            return
Y
Yang Zhang 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1911 1912

    parameter_list = list(filter(is_parameter, program.list_vars()))
1913 1914 1915 1916 1917

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1918
    with open(parameter_file_name, 'rb') as f:
1919
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1920
            f, encoding='latin1')
Y
Yang Zhang 已提交
1921 1922 1923 1924 1925
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1926 1927 1928 1929 1930

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1931
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1932
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1933
            "Optimizer file [{}] not exits".format(opt_file_name)
1934 1935 1936 1937

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1938 1939

        with open(opt_file_name, 'rb') as f:
1940
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1941
                f, encoding='latin1')
Y
Yang Zhang 已提交
1942 1943 1944 1945 1946
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1947 1948


H
hong 已提交
1949
def load_program_state(model_path, var_list=None):
1950
    """
1951 1952
    :api_attr: Static Graph

1953
    Load program state from local file
1954

1955 1956
    Args:
        model_path(str): The file prefix store the program
1957 1958
        var_list(list, optional): The variable list to load saved with
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1959
                                  Default: None.
1960
                                  The var_list is only used to get name,
H
hong 已提交
1961
                                  will not be modified.
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
1980

1981
    """
H
hong 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1994
        _logger.debug(
H
hong 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

2063
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2064
        "Parameter file [{}] not exits".format(parameter_file_name)
2065 2066

    with open(parameter_file_name, 'rb') as f:
2067
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
2068
            f, encoding='latin1')
2069

H
hong 已提交
2070
    opt_file_name = model_prefix + ".pdopt"
2071 2072
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
2073
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
2074
                f, encoding='latin1')
2075 2076 2077 2078 2079 2080

        para_dict.update(opti_dict)

    return para_dict


2081
@dygraph_not_support
2082 2083
def set_program_state(program, state_dict):
    """
2084 2085
    :api_attr: Static Graph

2086 2087
    Set program parameter from state_dict

2088
    An exception will throw if shape or dtype of the parameters is not match.
2089 2090 2091 2092 2093 2094

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2095
    Returns:
2096
        None
2097

2098 2099
    Examples:
        .. code-block:: python
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
2114 2115
            fluid.set_program_state( prog, program_state)

2116 2117 2118 2119 2120 2121 2122
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2123
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2124 2125 2126 2127
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2128
            assert orig_para_np.shape == new_para_np.shape, \
2129
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2130
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2131
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2132
            assert orig_para_np.dtype == new_para_np.dtype, \
2133
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2134
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2135 2136 2137 2138 2139 2140
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
2141
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))