“dcb309cedca8611da4320798a0e8d383e50e24d0”上不存在“2.0/packaging/tools/makepkg.sh”
pybind.cc 113.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/device_context.h"
62
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/platform/enforce.h"
64
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
65
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
68 69 70
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
71
#include "paddle/fluid/pybind/box_helper_py.h"
72
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
77
#include "paddle/fluid/pybind/generator_py.h"
78
#include "paddle/fluid/pybind/global_value_getter_setter.h"
79
#include "paddle/fluid/pybind/gloo_context_py.h"
80
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/heter_wrapper_py.h"
82
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
86
#include "paddle/fluid/pybind/pybind_boost_headers.h"
87

88
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
90
#endif
91
#include "paddle/fluid/framework/data_type.h"
92 93
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
94
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/tensor_py.h"
96
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
97
#ifdef PADDLE_WITH_CUDA
98
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
99
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
100
#endif
Y
Yi Wang 已提交
101 102
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
103 104
#endif

105 106 107 108
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
109 110 111 112
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
113
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
114 115 116
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
117 118
#include "pybind11/stl.h"

119
DECLARE_bool(use_mkldnn);
120

Q
Qiao Longfei 已提交
121 122
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
123 124 125
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
126

127
namespace paddle {
128
namespace pybind {
129
bool IsCompiledWithCUDA() {
130
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
131 132 133 134 135 136
  return false;
#else
  return true;
#endif
}

137 138 139 140 141 142 143 144
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

145 146 147 148 149 150 151 152
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

153 154 155 156 157 158 159 160 161 162 163
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

164
bool IsCompiledWithBrpc() {
165
#ifndef PADDLE_WITH_DISTRIBUTE
166 167
  return false;
#endif
168 169 170 171 172 173

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
174 175
}

Y
update  
Yancey1989 已提交
176
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
177
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
178 179 180 181 182 183
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
184 185 186 187 188 189 190 191 192 193
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
216 217 218
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
232 233
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
234 235
    }
    vec_res.emplace_back(
236
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
237 238 239 240 241 242 243 244 245 246 247 248
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
249 250
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
251 252 253 254 255 256 257 258 259 260 261 262
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
263 264 265
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
266 267 268 269
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
270 271
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
272 273 274 275
  }
  return vec_res;
}

276 277 278 279 280 281 282 283
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
284 285
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
286 287 288 289 290 291 292 293 294 295 296 297 298
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
299 300 301
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
302 303 304 305 306
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
307 308 309 310 311
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
312 313
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
314 315 316
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
317 318 319 320 321 322 323 324 325
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
326 327
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
328 329 330 331 332
  }

  return;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

357 358 359 360 361 362
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
363 364 365
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
366
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
367

368 369
  AssertStaticGraphAndDygraphGradMakerNoDiff();

370
  m.doc() = "C++ core of PaddlePaddle";
371

372 373 374 375
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

376
  BindException(&m);
Y
Yu Yang 已提交
377

378 379
  m.def("set_num_threads", &platform::SetNumThreads);

380 381 382 383
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
402 403 404 405 406 407 408 409 410
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
411
           const Scope &scope, const Executor *executor) {
H
hong 已提交
412
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
413
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
414 415 416
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

417 418 419 420 421 422
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
442

443 444 445 446 447 448
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
449 450
  });

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
476 477 478 479 480 481
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
482
  m.def(
S
sneaxiy 已提交
483
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
484 485 486 487
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
488 489 490
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
507 508 509
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
510
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
511

512
  m.def("_set_fuse_parameter_group_size",
513
        &paddle::framework::ir::SetFuseParameterGroupsSize);
514
  m.def("_set_fuse_parameter_memory_size",
515
        &paddle::framework::ir::SetFuseParameterMemorySize);
516

S
sneaxiy 已提交
517 518 519
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

520 521
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

522 523 524
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

525
  BindImperative(&m);
526

527
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
528
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
529 530
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
531
      .def("_get_dims",
532
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
533
      .def("_set_dims",
Q
qijun 已提交
534
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
535
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
536
           })
Y
yuyang18 已提交
537
      .def("_set_layout",
D
dzhwinter 已提交
538 539 540
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
541
      .def("_alloc_float",
D
dzhwinter 已提交
542
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
543
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
544
           })
545 546 547 548
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
549
      .def("_alloc_float",
Y
Yu Yang 已提交
550
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
551
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
552
           })
553 554 555 556
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
557
      .def("_alloc_int",
Y
Yu Yang 已提交
558
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
559
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
560
           })
561 562 563 564
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
565
      .def("_alloc_int",
D
dzhwinter 已提交
566
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
567
             self.mutable_data<int>(place);
Q
qijun 已提交
568
           })
Y
yuyang18 已提交
569
      .def("_alloc_int",
C
chengduoZH 已提交
570 571 572
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
573
      .def("_alloc_float",
C
chengduoZH 已提交
574 575 576
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
577 578 579 580 581
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
582 583 584 585 586
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
587 588 589 590 591 592 593 594 595 596
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
597
      .def("_clear", &Tensor::clear)
598
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
599
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
600 601
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
602
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
603
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
604
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
605 606
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
607 608 609 610
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
611
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
612
          LoDTensor is to be set.
613 614
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
628

L
Leo Chen 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
668 669 670 671
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
672
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
673
      .def("_dtype", [](Tensor &self) { return self.type(); })
674 675
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
676
      .def("_share_data_with", &Tensor::ShareDataWith)
677 678 679 680 681 682
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
683

L
Leo Chen 已提交
684
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
685
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
760 761 762 763 764 765 766

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
767 768

        )DOC")
769
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
770 771 772 773 774 775 776 777 778
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
779 780
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
781 782 783 784
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
785 786
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
787
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
788
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
789 790
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
791 792 793
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
794
      .def("set_lod",
795
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
796
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
797
             LoD new_lod;
798 799
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
800 801
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
802 803
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
804
             self.set_lod(new_lod);
S
sneaxiy 已提交
805 806 807 808 809
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
810 811 812 813
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
814 815 816 817 818 819 820 821 822 823

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
824
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
825
           )DOC")
826 827 828 829 830 831 832 833 834 835 836
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
837 838
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
839 840 841 842 843
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
844
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
845 846
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
847
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
848

L
Leo Chen 已提交
849
           For example, if recursive_sequence_lengths=[[2, 3]], which means
850
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
851
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
852 853

           Args:
L
Leo Chen 已提交
854 855 856 857
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
858 859 860 861 862 863 864 865 866 867

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
868 869
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
870
           )DOC")
871 872 873 874 875 876 877 878
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
879 880 881 882 883
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
884 885
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
886 887 888 889 890 891 892 893 894 895
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
896
           )DOC")
G
gongweibao 已提交
897
      // Set above comments of set_lod.
898 899 900 901 902 903 904 905
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
906 907
           },
           R"DOC(
L
Leo Chen 已提交
908 909
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
910 911

           Returns:
L
Leo Chen 已提交
912
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
913 914 915 916 917 918 919 920 921 922 923

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
924 925 926 927 928 929 930 931
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
932
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
933 934

           Returns:
L
Leo Chen 已提交
935
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
936 937 938 939 940 941 942 943 944 945 946

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
947 948 949 950 951 952 953
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
954
           )DOC")
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
973
#ifdef _WIN32
974
      });
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1025

Q
qijun 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1037 1038
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1039 1040
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1050
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1051
      .def("rows", [](SelectedRows &self) {
1052 1053 1054 1055 1056
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1057
      });
Q
qijun 已提交
1058

1059
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1060 1061 1062

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1063
      .def(py::init<>())
1064
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1065
      .def("set_int",
1066 1067
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1068 1069 1070 1071 1072 1073 1074
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1075
      .def("get_tensor",
1076 1077
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1078 1079
           },
           py::return_value_policy::reference)
1080 1081 1082 1083
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1084 1085 1086
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1087 1088 1089 1090 1091
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1092 1093 1094
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1095 1096 1097
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1098
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1099 1100 1101 1102 1103
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1104
#endif
Y
Refine  
Yu Yang 已提交
1105 1106
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1107 1108 1109 1110
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1111 1112
             return self.GetMutable<framework::ReaderHolder>();
           },
1113 1114 1115 1116 1117
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1118

S
sneaxiy 已提交
1119
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1120

S
sneaxiy 已提交
1121
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1135
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1136 1137 1138 1139 1140 1141
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1142 1143
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1144
      .def("var",
1145
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1146
             return self.Var(name);
Y
Yu Yang 已提交
1147
           },
S
sneaxiy 已提交
1148 1149
           py::arg("name"),
           R"DOC(
1150
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1151

1152
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1153
           current scope, the variable would be created. Otherwise,
1154
           return the existing variable.
S
sneaxiy 已提交
1155 1156

           Args:
1157 1158
               name (str): the variable name.

S
sneaxiy 已提交
1159
           Returns:
1160
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1161 1162 1163 1164
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1165
           Find variable named :code:`name` in the current scope or
1166
           its parent scope. Return None if not found. 
1167

S
sneaxiy 已提交
1168 1169
           Args:
               name (str): the variable name.
1170

S
sneaxiy 已提交
1171
           Returns:
1172
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1173
           )DOC",
1174
           py::return_value_policy::reference)
1175
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1176 1177 1178 1179 1180 1181
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1182
           py::return_value_policy::reference)
S
sneaxiy 已提交
1183 1184 1185
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1186 1187
           )DOC")
      .def("_kids", &Scope::kids);
1188

S
sneaxiy 已提交
1189 1190 1191 1192 1193 1194
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1195 1196
        R"DOC(
        Create a new scope.
1197

S
sneaxiy 已提交
1198 1199 1200
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1201 1202
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1203 1204
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1205 1206
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1207 1208 1209 1210
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1211 1212
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1213 1214
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1215 1216 1217
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1218 1219
    return ret_values;
  });
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1249 1250 1251
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1252 1253 1254 1255 1256
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1257 1258 1259
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1274
  m.def("prune", [](const ProgramDesc &origin,
1275
                    const std::set<std::string> &feeded_var_names,
1276
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1277
    ProgramDesc prog_with_targets(origin);
1278

1279
    for (const auto &t : targets) {
1280
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1281
    }
1282
    proto::ProgramDesc pruned_desc;
1283 1284 1285 1286
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1287
  });
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1305 1306 1307 1308
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1309 1310 1311
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1312 1313
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1314

Q
qijun 已提交
1315
  // clang-format off
Y
Yu Yang 已提交
1316
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1317 1318
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1319
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1320 1321
                    return new paddle::platform::CPUDeviceContext();
                  })
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1334
      .def_static("create",
D
dzhwinter 已提交
1335
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1336
                      -> paddle::platform::DeviceContext* {
1337
#ifndef PADDLE_WITH_CUDA
1338 1339 1340 1341
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1342
#else
Q
qijun 已提交
1343
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1344
#endif
C
chengduoZH 已提交
1345 1346 1347 1348 1349
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1350 1351 1352 1353
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1354 1355 1356 1357
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1358
// clang-format on
1359
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1360 1361
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1362
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1363 1364 1365 1366 1367

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1368
    The memory of CUDAPlace with different dev_id is not accessible.
1369 1370 1371 1372 1373 1374 1375 1376
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1377 1378 1379 1380

    Examples:
        .. code-block:: python

1381 1382 1383
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1384

1385
        )DOC")
S
sneaxiy 已提交
1386 1387 1388
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1413 1414
             new (&self) platform::CUDAPlace(dev_id);
#else
1415 1416 1417 1418 1419 1420 1421 1422 1423
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1424 1425
#endif
           })
1426
#ifdef PADDLE_WITH_CUDA
1427 1428
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1429 1430 1431 1432
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1433
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1434 1435
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1436 1437 1438
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1439
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1440
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1487
#ifdef PADDLE_WITH_XPU
1488 1489 1490 1491 1492 1493 1494
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1495 1496 1497
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1498
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1499
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1500 1501 1502
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1503
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1504
    CPUPlace is a descriptor of a device.
1505
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1506 1507 1508 1509

    Examples:
        .. code-block:: python

1510 1511
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1512

1513
        )DOC")
1514
      .def(py::init<>())
S
sneaxiy 已提交
1515 1516
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1517
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1518 1519 1520 1521
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1522
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1523
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1524

1525
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1526 1527 1528 1529 1530 1531
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1532 1533 1534 1535

    Examples:
        .. code-block:: python

1536 1537
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1538

1539
        )DOC")
S
sneaxiy 已提交
1540
      .def("__init__",
S
sneaxiy 已提交
1541
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1542
#ifndef PADDLE_WITH_CUDA
1543 1544 1545
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1546
#endif
S
sneaxiy 已提交
1547
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1548
           })
S
sneaxiy 已提交
1549 1550 1551 1552
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1553 1554
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1555 1556 1557 1558
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1559
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1560 1561
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1562 1563
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1564 1565 1566 1567
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1568
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1569
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1570 1571
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1572 1573
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1574 1575
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1576 1577 1578 1579
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1580 1581
      .def("gpu_device_id",
           [](platform::Place &self) {
1582
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1583
           })
1584 1585 1586 1587
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1588 1589
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1590 1591 1592 1593
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1594 1595 1596 1597
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1598
      .def("set_place",
D
dzhwinter 已提交
1599
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1600
             self = gpu_place;
C
chengduoZH 已提交
1601
           })
1602 1603 1604 1605 1606 1607 1608
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1609

Y
Yu Yang 已提交
1610
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1611 1612 1613 1614 1615
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1616 1617 1618 1619 1620 1621 1622
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1623 1624
            return OpRegistry::CreateOp(desc);
          })
1625
      .def("run",
1626
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1627
              const platform::CPUPlace &place) { self.Run(scope, place); })
1628 1629 1630
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1631 1632
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1633
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1634 1635 1636 1637 1638
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1639 1640 1641 1642 1643 1644 1645
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1646 1647
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1648
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1649
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1650 1651 1652 1653
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1654

1655 1656 1657
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1658 1659 1660 1661 1662 1663 1664 1665 1666
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1667
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1668
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1669
      .def("close", &Executor::Close)
1670 1671
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1672 1673
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1674 1675 1676 1677
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1678
             pybind11::gil_scoped_release release;
1679 1680 1681 1682 1683 1684 1685
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1686 1687 1688
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1689
              std::map<std::string, FetchType *> *fetch_targets,
1690 1691 1692 1693 1694 1695 1696 1697
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1698
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1699 1700 1701 1702 1703 1704 1705
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1716
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1717 1718
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1719
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1720 1721
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1722
      });
S
sneaxiy 已提交
1723

D
dzhwinter 已提交
1724
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1725
  m.def("init_glog", framework::InitGLOG);
1726
  m.def("load_op_library", framework::LoadOpLib);
1727
  m.def("init_devices", []() { framework::InitDevices(); });
1728

1729
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1730
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1731
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1732
  m.def("supports_bfloat16", SupportsBfloat16);
1733
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1734
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1735 1736 1737
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1757 1758 1759 1760 1761 1762 1763
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1773 1774 1775 1776 1777 1778
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1779

1780
  m.def("set_feed_variable", framework::SetFeedVariable);
1781 1782 1783 1784 1785
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1786
            return py::cast(BOOST_GET(LoDTensor, var));
1787
          } else {
1788
            return py::cast(BOOST_GET(LoDTensorArray, var));
1789 1790
          }
        });
1791
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1792

X
Xin Pan 已提交
1793 1794
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1795 1796 1797 1798 1799
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1800
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1801

Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1811
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1812
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1813 1814 1815

    Examples:
        .. code-block:: python
1816

Z
Zeng Jinle 已提交
1817 1818 1819 1820
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1821 1822
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1823 1824 1825 1826 1827 1828
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1829 1830 1831 1832
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1833 1834 1835
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1836 1837 1838 1839 1840 1841
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1842 1843
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1844 1845 1846 1847 1848 1849
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1872

1873 1874 1875 1876 1877 1878 1879 1880
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1881
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1882 1883
                 res[i] = py::cast(std::move(data));
               } else {
1884
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1900
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1901 1902 1903 1904 1905 1906 1907 1908
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1909
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1910 1911 1912 1913 1914 1915 1916 1917 1918
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1919 1920
        )DOC")
      .def("_move_to_list",
1921
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1922 1923 1924 1925
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1926
                 if (data_is_lod_tensor(self[i][j])) {
1927
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1928 1929
                   tmp[j] = py::cast(std::move(var));
                 } else {
1930
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1931 1932 1933 1934 1935 1936
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1946
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1947
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1948
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1949

P
peizhilin 已提交
1950
#ifndef _WIN32
D
dangqingqing 已提交
1951 1952 1953
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1954
#endif
P
peizhilin 已提交
1955
#endif
Y
Yu Yang 已提交
1956

1957 1958 1959 1960 1961 1962
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1963 1964 1965 1966
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1967
      .value("kAll", platform::ProfilerState::kAll)
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1979
  m.def("set_tracer_option", platform::SetTracerOption);
1980 1981
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1982
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1983
  m.def("reset_profiler", platform::ResetProfiler);
1984
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1985 1986 1987
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1988

1989 1990
  m.def("size_of_dtype", framework::SizeOfType);

1991 1992 1993
#ifdef PADDLE_WITH_CUDA
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
1994 1995
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
1996 1997
#endif  // PADDLE_WITH_CUDA

1998 1999 2000
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2001 2002
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2003
      .def("has", &ir::Pass::Has)
2004 2005 2006
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2007
           })
2008
      .def(
2009
          "set",
2010 2011 2012
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2013 2014
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2015 2016
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2031 2032
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2033
        self.Apply(graph.get());
F
flame 已提交
2034
      });
2035

X
fix  
Xin Pan 已提交
2036 2037
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2052
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2053

Y
yuyang18 已提交
2054
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2055 2056 2057 2058
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2059 2060 2061
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2062 2063 2064
    Examples:
        .. code-block:: python

2065 2066 2067 2068 2069 2070 2071 2072 2073
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2074

2075 2076
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2077

2078
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2079 2080
          sgd_optimizer.minimize(avg_loss)

2081
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2082 2083
          exec_strategy.num_threads = 4

2084 2085 2086
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2087 2088
        )DOC");

2089 2090 2091 2092
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2093

Y
yuyang18 已提交
2094
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2095 2096 2097 2098 2099
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2100
          },
2101 2102
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2103 2104 2105 2106 2107 2108 2109
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2123
      .def_property(
2124 2125
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2126
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2127 2128 2129
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2130 2131 2132 2133 2134
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2135 2136 2137
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2138 2139
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2140 2141 2142 2143 2144 2145 2146
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2147 2148 2149 2150
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2151
                because the temp variable's shape maybe the same between two iterations.
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2162

2163 2164 2165 2166 2167 2168 2169
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2170
              )DOC")
Q
Qiao Longfei 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2192
              )DOC")
2193 2194 2195 2196 2197 2198 2199 2200
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2201 2202 2203 2204 2205
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2206

Y
yuyang18 已提交
2207
  exec_strategy.def_property(
Y
yuyang18 已提交
2208 2209 2210 2211 2212 2213 2214
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2215 2216
      });

C
chengduo 已提交
2217 2218 2219 2220
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2221 2222 2223
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2224 2225 2226
    Examples:
        .. code-block:: python

2227
            import os
2228 2229 2230 2231
            import paddle
            import paddle.static as static

            paddle.enable_static()
2232

2233 2234
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2235

2236 2237 2238 2239
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2240

2241
            build_strategy = static.BuildStrategy()
2242 2243
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2244 2245
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2246
            program = program.with_data_parallel(loss_name=loss.name,
2247 2248
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2249
)DOC");
Y
yuyang18 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2266 2267 2268 2269
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2270
            self.reduce_ = strategy;
C
chengduo 已提交
2271
          },
2272
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2273 2274
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2275
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2276 2277
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2278
                Default is 'AllReduce'.
F
flame 已提交
2279 2280 2281 2282

                Examples:
                    .. code-block:: python

2283 2284 2285 2286 2287 2288 2289
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2290
                  )DOC")
Y
yuyang18 已提交
2291 2292 2293 2294 2295
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2296 2297 2298 2299
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2300
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2301
          },
2302
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2303
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2304 2305
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2306
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2307 2308 2309 2310

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2311 2312
                        import numpy
                        import os
2313 2314 2315 2316
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2317 2318

                        use_cuda = True
2319 2320
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2321 2322

                        # NOTE: If you use CPU to run the program, you need
2323
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2324 2325 2326 2327 2328 2329
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2330
                            places = static.cpu_places()
C
chengduo 已提交
2331
                        else:
2332
                            places = static.cuda_places()
C
chengduo 已提交
2333

2334 2335 2336 2337
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2338

2339
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2340

2341
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2342
                        build_strategy.gradient_scale_strategy = \
2343 2344 2345
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2346
                                          loss_name=loss.name, build_strategy=build_strategy,
2347
                                          places=places)
C
chengduo 已提交
2348 2349 2350 2351 2352 2353

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2354 2355
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2356
                   )DOC")
Y
yuyang18 已提交
2357 2358 2359 2360
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2361 2362 2363 2364
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2365
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2366
          },
2367
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2368
                writing the SSA Graph to file in the form of graphviz.
2369
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2370 2371 2372 2373

                Examples:
                    .. code-block:: python

2374 2375 2376 2377
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2378

2379 2380
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2381
                    )DOC")
S
sneaxiy 已提交
2382 2383 2384 2385 2386 2387
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2388 2389 2390 2391
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2392 2393
            self.enable_sequential_execution_ = b;
          },
2394 2395
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2396 2397 2398 2399

                Examples:
                    .. code-block:: python

2400 2401 2402 2403 2404 2405
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2406 2407
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2408 2409 2410 2411 2412 2413
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2414 2415 2416 2417
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2418 2419
            self.remove_unnecessary_lock_ = b;
          },
2420 2421
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2422 2423 2424 2425

                Examples:
                    .. code-block:: python

2426 2427 2428 2429 2430 2431
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2432 2433
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2434 2435 2436 2437
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2438
#ifdef WIN32
2439
            PADDLE_THROW(platform::errors::Unavailable(
2440
                "Distribution mode is not supported on Windows platform."));
2441
#endif
2442 2443
            self.num_trainers_ = num_trainers;
          })
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2456 2457 2458 2459 2460 2461
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2462
      .def_property("use_hierarchical_allreduce",
2463 2464 2465 2466 2467 2468
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2469
      .def_property("hierarchical_allreduce_inter_nranks",
2470 2471 2472 2473 2474 2475 2476
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2477 2478 2479 2480 2481 2482
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2483 2484 2485 2486
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2487 2488
            self.fuse_elewise_add_act_ops_ = b;
          },
2489
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2490
                to fuse elementwise_add_op and activation_op,
2491
                it may make the execution faster. Default is False.
F
flame 已提交
2492 2493 2494 2495

                Examples:
                    .. code-block:: python

2496 2497 2498 2499 2500 2501
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2502 2503
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2504 2505 2506 2507
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2508
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2509
                              platform::errors::PreconditionNotMet(
2510 2511
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2521 2522 2523 2524 2525 2526
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2527 2528
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2554 2555 2556 2557
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2558
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2559
                              platform::errors::PreconditionNotMet(
2560 2561
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2572 2573 2574 2575 2576 2577
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2578 2579
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2580 2581 2582 2583 2584 2585
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2586 2587 2588 2589
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2590 2591
            self.fuse_relu_depthwise_conv_ = b;
          },
2592
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2593 2594 2595
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2596
                Default is False.
F
flame 已提交
2597 2598 2599 2600

                Examples:
                    .. code-block:: python

2601 2602 2603 2604 2605 2606
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2607 2608
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2609 2610 2611 2612 2613 2614
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2615 2616 2617 2618
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2619 2620
                      self.fuse_broadcast_ops_ = b;
                    },
2621
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2622 2623 2624 2625
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2626 2627 2628 2629 2630
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2631 2632 2633 2634 2635 2636
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2637 2638
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2639 2640
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2641 2642
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2643 2644
                    },
                    [](BuildStrategy &self, bool b) {
2645 2646 2647 2648
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2649 2650
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2651 2652 2653 2654
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2655 2656 2657 2658
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2659 2660
            self.sync_batch_norm_ = b;
          },
2661
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2662 2663 2664
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2665 2666
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2667 2668 2669 2670

                Examples:
                    .. code-block:: python

2671 2672 2673 2674 2675 2676
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2677 2678
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2679 2680
      .def_property(
          "memory_optimize",
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2695 2696 2697
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2698 2699
            }
          },
2700
          R"DOC((bool, optional): memory opitimize aims to save total memory
2701
                consumption, set to True to enable it.
2702

2703 2704 2705
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2720 2721 2722
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2723 2724 2725
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2726
              PADDLE_THROW(platform::errors::Unavailable(
2727
                  "Distribution mode is not supported on Windows platform."));
2728 2729 2730 2731 2732
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2733 2734 2735
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2736
      .def_property(
D
dzhwinter 已提交
2737 2738 2739
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2740 2741 2742 2743
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2744 2745
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2746 2747 2748 2749
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2750
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2751 2752 2753 2754 2755 2756 2757
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2758 2759 2760 2761
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2762 2763 2764 2765 2766 2767 2768 2769 2770
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2771
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2772
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2773 2774 2775 2776 2777
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2778 2779

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2780
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2781
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2782
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2783 2784 2785 2786
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2787 2788 2789 2790 2791
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2792 2793 2794
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2795 2796 2797 2798
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2799 2800
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2801 2802 2803 2804 2805 2806 2807 2808
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2809
               return py::cast(
2810
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2811 2812
             } else {
               return py::cast(std::move(
2813
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2814
             }
2815 2816
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2817

D
dongdaxiang 已提交
2818
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2819

T
Thunderbrook 已提交
2820 2821
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2822 2823 2824
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2825
#endif
2826
  BindGlooWrapper(&m);
H
hutuxian 已提交
2827
  BindBoxHelper(&m);
H
hutuxian 已提交
2828 2829 2830
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2831
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2832
  BindNCCLWrapper(&m);
2833 2834 2835
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2836
#endif
F
flame 已提交
2837 2838
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2839
  BindInferenceApi(&m);
2840
  BindCompatible(&m);
2841
  BindDataset(&m);
Y
yaoxuefeng 已提交
2842
  BindGenerator(&m);
H
hutuxian 已提交
2843 2844 2845 2846
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2847 2848 2849
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2850

T
tangwei12 已提交
2851
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2852 2853
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2854
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2855 2856
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2857
#endif
L
Luo Tao 已提交
2858
}
2859
}  // namespace pybind
2860
}  // namespace paddle