test_conv3d_transpose_layer.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


class Conv3DTransposeTestCase(unittest.TestCase):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    def __init__(
        self,
        methodName='runTest',
        batch_size=2,
        spartial_shape=(8, 8, 8),
        num_channels=6,
        num_filters=8,
        filter_size=3,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=1,
        no_bias=False,
        data_format="NCDHW",
        dtype="float32",
    ):
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        super(Conv3DTransposeTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size
        self.output_size = output_size

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NDHWC"
        if self.channel_last:
60 61 62
            input_shape = (
                (self.batch_size,) + self.spartial_shape + (self.num_channels,)
            )
63
        else:
64 65 66 67
            input_shape = (
                self.batch_size,
                self.num_channels,
            ) + self.spartial_shape
68 69 70 71 72 73
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 3
        else:
            filter_size = self.filter_size
74 75 76 77 78 79 80
        self.weight_shape = weight_shape = (
            self.num_channels,
            self.num_filters // self.groups,
        ) + tuple(filter_size)
        self.weight = np.random.uniform(-1, 1, size=weight_shape).astype(
            self.dtype
        )
81 82 83 84
        if self.no_bias:
            self.bias = None
        else:
            self.bias = np.random.uniform(
85 86
                -1, 1, size=(self.num_filters,)
            ).astype(self.dtype)
87 88 89 90 91 92

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
93 94 95 96 97
                input_shape = (
                    (-1, -1, -1, -1, self.num_channels)
                    if self.channel_last
                    else (-1, self.num_channels, -1, -1, -1)
                )
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
                y_var = fluid.layers.conv3d_transpose(
                    x_var,
                    self.num_filters,
                    filter_size=self.filter_size,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
115 116
                    data_format=self.data_format,
                )
117 118 119
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
120
        (y_np,) = exe.run(main, feed=feed_dict, fetch_list=[y_var])
121 122 123 124 125 126 127
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
128 129 130 131 132
                input_shape = (
                    (-1, -1, -1, -1, self.num_channels)
                    if self.channel_last
                    else (-1, self.num_channels, -1, -1, -1)
                )
133
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype
                )
                b_var = fluid.data(
                    "bias", (self.num_filters,), dtype=self.dtype
                )
                y_var = F.conv3d_transpose(
                    x_var,
                    w_var,
                    None if self.no_bias else b_var,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
151 152 153 154 155
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
156
        (y_np,) = exe.run(main, feed=feed_dict, fetch_list=[y_var])
157 158 159 160
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
161 162 163 164 165 166 167 168 169 170
        conv = nn.Conv3DTranspose(
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
            data_format=self.data_format,
        )
171 172 173
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
L
LielinJiang 已提交
174
        y_var = conv(x_var, self.output_size)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv3DTransposeErrorTestCase(Conv3DTransposeTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
L
LielinJiang 已提交
205
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest'))
206
    suite.addTest(
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        Conv3DTransposeTestCase(
            methodName='runTest', stride=[1, 2, 1], dilation=2, no_bias=True
        )
    )
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            output_size=[12, 19, 12],
            stride=[1, 2, 1],
            dilation=2,
        )
    )
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', stride=2, dilation=(2, 1, 2)
        )
    )
224
    suite.addTest(
225 226
        Conv3DTransposeTestCase(methodName='runTest', padding="valid")
    )
227
    suite.addTest(
228 229
        Conv3DTransposeTestCase(methodName='runTest', padding='valid')
    )
230
    suite.addTest(
231 232 233 234
        Conv3DTransposeTestCase(
            methodName='runTest', filter_size=1, padding=(2, 3, 1)
        )
    )
235
    suite.addTest(
236 237 238 239
        Conv3DTransposeTestCase(
            methodName='runTest', padding=[1, 2, 2, 3, 2, 1]
        )
    )
240
    suite.addTest(
241 242 243 244 245
        Conv3DTransposeTestCase(
            methodName='runTest',
            padding=[[0, 0], [0, 0], [2, 3], [1, 2], [2, 1]],
        )
    )
246
    suite.addTest(
247 248
        Conv3DTransposeTestCase(methodName='runTest', data_format="NDHWC")
    )
249
    suite.addTest(
250 251 252 253 254 255
        Conv3DTransposeTestCase(
            methodName='runTest',
            data_format="NDHWC",
            padding=[[0, 0], [1, 1], [2, 2], [3, 3], [0, 0]],
        )
    )
256
    suite.addTest(
257 258
        Conv3DTransposeTestCase(methodName='runTest', groups=2, padding="valid")
    )
259
    suite.addTest(
260 261 262 263 264 265 266 267
        Conv3DTransposeTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid",
        )
    )
268 269 270 271


def add_error_cases(suite):
    suite.addTest(
272 273 274 275
        Conv3DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2
        )
    )
276
    suite.addTest(
277 278 279 280
        Conv3DTransposeErrorTestCase(
            methodName='runTest', output_size="not_valid"
        )
    )
281
    suite.addTest(
282 283 284 285
        Conv3DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2, padding=[-1, 1, 3]
        )
    )
286 287 288 289 290 291 292 293 294 295 296


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()