auto_parallel_recompute.py 18.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

from .pass_base import PassBase, register_pass
from paddle.fluid import core, unique_name
from paddle.fluid import framework as framework
20
from paddle.fluid.framework import Variable
21 22
from paddle.fluid.backward import _append_grad_suffix_, _get_no_grad_set_name
from paddle.fluid.backward import ProgramStats, _rename_arg_, _find_op_path_
23 24 25 26 27 28 29 30 31 32 33
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    get_loss_op,
    set_var_dist_attr,
    set_dist_op_desc_original_id,
)
from paddle.distributed.auto_parallel.utils import (
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


class RecomputeState(ProgramStats):
    def __init__(self, block, ops):
        super(RecomputeState, self).__init__(block=block, ops=ops)
        self._block = block
        self._ops = ops
        self.var_op_deps = {}

    def build_stats(self):
        for i, op in enumerate(self._ops):
            for name in op.desc.input_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for name in op.desc.output_arg_names():
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

    def get_recompute_segments(self, checkpoints):
62
        """get recompute segments from checkpoints"""
63 64 65 66 67 68 69 70 71 72 73 74 75 76
        segments = []
        start_idx = -1
        pre_segment_end_idx = -1
        while start_idx + 1 < len(checkpoints):
            if start_idx == -1:
                ckpt_name = checkpoints[start_idx + 1]
                if ckpt_name not in self.var_op_deps:
                    start_idx += 1
                    continue
                op_idx_list = self.var_op_deps[ckpt_name]["var_as_output_ops"]
                if op_idx_list:
                    segments.append([0, max(op_idx_list) + 1])
            else:
                flag, min_idx, max_idx = self.is_subgraph(
77 78
                    [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
                )
79
                if flag:
80
                    min_idx = self._update_segment_start(
81 82
                        min_idx, pre_segment_end_idx
                    )
83 84
                    segments.append([min_idx, max_idx + 1])
                else:
85 86
                    logging.info(
                        "Could not recompute op range [{}] - [{}] ".format(
87 88 89
                            min_idx, max_idx + 1
                        )
                    )
90 91 92 93
            start_idx += 1

        for i, (idx1, idx2) in enumerate(segments):
            logging.info("recompute segment[{}]".format(i))
94 95 96 97 98 99 100 101 102 103 104 105 106 107
            logging.info(
                "segment start op: [{}]: [{}] [{}]".format(
                    self._ops[idx1].desc.type(),
                    self._ops[idx1].desc.input_arg_names(),
                    self._ops[idx1].desc.output_arg_names(),
                )
            )
            logging.info(
                "segment end op: [{}]: [{}] [{}]".format(
                    self._ops[idx2 - 1].desc.type(),
                    self._ops[idx2 - 1].desc.input_arg_names(),
                    self._ops[idx2 - 1].desc.output_arg_names(),
                )
            )
108 109 110 111 112

        return segments

    def modify_forward_desc_for_recompute(self, dist_context):
        """
113
        If program's foward part has 'dropout' op, this function will insert
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        a seed op before it to guarantee that two dropout op have the same outputs.
        """
        op_types = [op.desc.type() for op in self._ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while op_idx < len(self._ops):
            cur_op = self._ops[op_idx]
            if "grad" in cur_op.type:
                break
            if cur_op.type != "dropout":
                op_idx += 1
                continue
            if cur_op.input("Seed") is not None and len(cur_op.input("Seed")):
                op_idx += 1
                continue

            cur_op_dist_attr = dist_context.get_op_dist_attr_for_program(cur_op)
            # insert seed op to guarantee that two dropout op have the same outputs
            op_unique_name = unique_name.generate("seed")
135 136 137
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
138 139 140 141 142
            seed_var = self._block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
143 144
                stop_gradient=False,
            )
145 146 147 148

            # set new seed_var's dist_attr
            ref_dims_mapping = [-1]
            ref_process_mesh = cur_op_dist_attr.process_mesh
149 150 151 152 153 154 155 156 157
            seed_var_dist_attr = set_var_dist_attr(
                dist_context, seed_var, ref_dims_mapping, ref_process_mesh
            )

            seed = (
                0
                if cur_op.attr("fix_seed") is False
                else int(cur_op.attr("seed"))
            )
158 159 160 161 162
            seed_op = self._block._insert_op_without_sync(
                index=cur_op.idx,
                type="seed",
                inputs={},
                outputs={"Out": seed_var},
163 164
                attrs={"seed": seed, "force_cpu": True},
            )
165 166
            # set new seed op's dist_attr
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
167 168
                seed_op, ref_process_mesh, ref_dims_mapping, dist_context
            )
169 170 171 172

            # modify dropout op's desc
            self._ops.insert(op_idx, seed_op)
            cur_op.desc.set_input("Seed", [var_unique_name])
173 174
            cur_op._remove_attr("fix_seed")
            cur_op._remove_attr("seed")
175 176 177
            cur_op_dist_attr.set_input_dist_attr(
                seed_var.name, seed_var_dist_attr
            )
178 179
            op_idx += 2

180 181
        self._block._sync_with_cpp()

182 183 184 185 186 187 188 189 190

def _find_op_index(block, cur_op):
    for idx in range(block.desc.op_size()):
        if cur_op.desc == block.desc.op(idx):
            return idx
    return -1


def _get_stop_gradients(program, no_grad_set):
191
    """get no grad var"""
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    if no_grad_set is None:
        no_grad_set = set()
    else:
        no_grad_set = _get_no_grad_set_name(no_grad_set)

    no_grad_set_name = set()
    for var in program.list_vars():
        assert isinstance(var, Variable)
        if "@GRAD" in var.name:
            break
        if var.stop_gradient:
            no_grad_set_name.add(_append_grad_suffix_(var.name))
    no_grad_set_name.update(list(map(_append_grad_suffix_, no_grad_set)))
    return no_grad_set_name


208 209 210
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, dist_context
):
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    """
    Get the recomputed ops which will insert the backward part
    """
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            set_dist_op_desc_original_id(new_op_desc, desc, dist_context)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


@register_pass("auto_parallel_recompute")
class RecomputePass(PassBase):
    def __init__(self):
        super(RecomputePass, self).__init__()
        self.set_attr("checkpoints", None)
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("no_grad_set", None)

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        if self.get_attr("loss") is None:
            return False
        if self.get_attr("checkpoints") is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

260
    def _apply_single_impl(self, main_program, startup_program, context):
261 262 263 264 265
        checkpoints = self.get_attr("checkpoints")
        loss = self.get_attr("loss")
        no_grad_set = self.get_attr("no_grad_set")
        self._dist_context = self.get_attr("dist_context")

266 267
        main_block = main_program.global_block()
        no_grad_set_name = _get_stop_gradients(main_program, no_grad_set)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        # get op_path which is related to loss
        op_path = _find_op_path_(main_block, [loss], [], no_grad_set_name)

        # step 1: build recompute state
        rc_state = RecomputeState(main_block, op_path)
        rc_state.modify_forward_desc_for_recompute(self._dist_context)
        rc_state.build_stats()
        checkpoints = rc_state.sort_checkpoints(checkpoints)
        segments = rc_state.get_recompute_segments(checkpoints)
        if segments == []:
            return

        # step 2: get vars_should_be_hold
        vars_should_be_hold = []
        for segment in segments:
            vars_should_be_hold.extend(
284 285
                rc_state.get_out_of_subgraph_vars(segment[0], segment[1])
            )
286
        cross_vars = set(vars_should_be_hold) - set(checkpoints)
287 288 289
        logging.info(
            "found [{}] vars which cross recompute segment: [{}],"
            "better checkpoints might be set to reduce those vars".format(
290 291 292
                len(cross_vars), cross_vars
            )
        )
293 294 295 296 297 298 299 300 301 302
        vars_should_be_hold.extend(rc_state.get_reserved_vars())
        vars_should_be_hold.extend(rc_state.get_input_nodes())
        vars_should_be_hold = list(set(vars_should_be_hold))
        vars_in_memory = vars_should_be_hold + checkpoints

        # step 3: get recomputed fwd ops desc
        var_name_dict = {}
        ckpt_ops_dict = {}
        buffer_block = main_block.program._create_block()
        for i, segment in enumerate(segments[::-1]):
303
            fwd_ops = op_path[segment[0] : segment[1]]
304 305 306 307 308
            var_suffix = ".subprog_%d" % i
            for op in fwd_ops:
                input_and_output_names = []
                input_and_output_names.extend(op.desc.input_arg_names())
                input_and_output_names.extend(op.desc.output_arg_names())
309 310 311
                cur_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(op)
                )
312 313 314 315 316 317 318 319 320
                assert cur_op_dist_attr is not None
                for name in input_and_output_names:
                    if main_block.var(name).persistable or name in checkpoints:
                        continue
                    if name in vars_should_be_hold:
                        continue
                    if name not in var_name_dict:
                        ref_process_mesh = cur_op_dist_attr.process_mesh
                        if name in op.desc.input_arg_names():
321 322 323
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_input_dims_mapping(name)
                            )
324
                        else:
325 326 327
                            ref_dims_mapping = (
                                cur_op_dist_attr.get_output_dims_mapping(name)
                            )
328 329 330 331 332 333 334 335 336 337
                        # record recomputed var's old_name and new_name (old_name.subprog_XXX)
                        # create new var with new name
                        var_name_dict[name] = name + var_suffix
                        ref_var = main_block.var(name)
                        rc_var = main_block.create_var(
                            name=var_name_dict[name],
                            shape=ref_var.shape,
                            dtype=ref_var.dtype,
                            type=ref_var.type,
                            persistable=ref_var.persistable,
338 339
                            stop_gradient=ref_var.stop_gradient,
                        )
340
                        # set new recomputed var's dist attr
341 342 343 344 345 346
                        set_var_dist_attr(
                            self._dist_context,
                            rc_var,
                            ref_dims_mapping,
                            ref_process_mesh,
                        )
347
            # get recomputed segment's descs
348 349 350 351 352 353 354
            segment_descs = _add_needed_descs_to_block(
                fwd_ops,
                buffer_block,
                main_block,
                vars_in_memory,
                self._dist_context,
            )
355 356 357 358 359
            # rename recomputed ops' input and output var name
            for key in var_name_dict:
                _rename_arg_(segment_descs, key, var_name_dict[key])

            # NOTE: one forward op could be correspond to multiple xxx_grad op.
360
            # When traversing all grad_ops in reverse, need to set a flag to indicate
361 362
            # whether the ckpt and its segment_descs can be used.
            ckpt_op = op_path[segment[1] - 1]
363
            ckpt_ops_dict[ckpt_op.desc.original_id()] = [True, segment_descs]
364 365 366 367 368 369 370 371 372 373 374 375 376

        # step 4: insert recomputed fwd ops
        ops = main_block.ops
        loss_op = get_loss_op(main_block)
        loss_op_idx = _find_op_index(main_block, loss_op)
        dist_op_context = self._dist_context.dist_op_context
        assert loss_op_idx != -1
        # Traversing all grad_ops in reverse, and if the fwd op corresponding to reverse op is checkpoints,
        # segments ops should be inserted.
        for i in range(len(ops) - 1, loss_op_idx, -1):
            grad_op = ops[i]
            # remove some attrs of dropout_grad op's desc
            if grad_op.type == "dropout_grad":
377 378
                grad_op._remove_attr("fix_seed")
                grad_op._remove_attr("seed")
379 380 381

            # rename grad op's var_name which is not in 'vars_in_memory'
            for key in var_name_dict:
382 383 384 385
                if (
                    key
                    not in grad_op.input_arg_names + grad_op.output_arg_names
                ):
386
                    continue
387 388 389 390
                self.reset_op_dist_attr(grad_op, var_name_dict)
                _rename_arg_([grad_op.desc], key, var_name_dict[key])

            # insert recomputed ops
391 392 393
            original_id = grad_op.desc.original_id()
            if original_id in dist_op_context.grad_op_id_to_op_id:
                fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
394 395 396 397 398 399
                if fwd_op_id in ckpt_ops_dict and ckpt_ops_dict[fwd_op_id][0]:
                    idx = grad_op.idx
                    while idx - 1 >= 0 and ops[idx - 1].type == "sum":
                        idx -= 1
                    segment_descs = ckpt_ops_dict[fwd_op_id][1]
                    for _, op_desc in reversed(list(enumerate(segment_descs))):
400 401 402
                        rc_op = main_block._insert_op_without_sync(
                            idx, type='nop'
                        )
403
                        rc_desc = rc_op.desc
404
                        rc_desc.copy_from(op_desc)
405
                        rc_desc.set_original_id(rc_desc.id())
406 407
                        # set recomputed ops' dist attr
                        fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program_with_id(
408 409
                            op_desc.original_id()
                        )
410
                        assert fwd_op_dist_attr is not None
411 412 413
                        self.set_op_dist_attr(
                            rc_op, fwd_op_dist_attr, var_name_dict
                        )
414 415 416

                    ckpt_ops_dict[fwd_op_id][0] = False

417
        main_program._sync_with_cpp()
418 419 420 421 422 423 424

    def reset_op_dist_attr(self, op, var_name_dict):
        op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None
        for input in op.desc.input_arg_names():
            if input in var_name_dict.keys():
                in_dist_attr = op_dist_attr.get_input_dist_attr(input)
425 426 427
                op_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
428 429 430
        for output in op.desc.output_arg_names():
            if output in var_name_dict.keys():
                out_dist_attr = op_dist_attr.get_output_dist_attr(output)
431 432 433
                op_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
434 435 436 437 438

    def set_op_dist_attr(self, op, old_dist_attr, var_name_dict):
        new_dist_attr = OperatorDistributedAttribute()
        new_dist_attr.is_recompute = True
        new_dist_attr.impl_idx = old_dist_attr.impl_idx
Z
zhaoyingli 已提交
439
        new_dist_attr.impl_type = old_dist_attr.impl_type
440 441 442 443
        new_dist_attr.process_mesh = old_dist_attr.process_mesh
        for input in old_dist_attr.inputs_dist_attrs.keys():
            if input in var_name_dict.keys():
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
444 445 446
                new_dist_attr.set_input_dist_attr(
                    var_name_dict[input], in_dist_attr
                )
447 448 449 450 451 452
            else:
                in_dist_attr = old_dist_attr.inputs_dist_attrs[input]
                new_dist_attr.set_input_dist_attr(input, in_dist_attr)
        for output in old_dist_attr.outputs_dist_attrs.keys():
            if output in var_name_dict.keys():
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
453 454 455
                new_dist_attr.set_output_dist_attr(
                    var_name_dict[output], out_dist_attr
                )
456 457 458 459
            else:
                out_dist_attr = old_dist_attr.outputs_dist_attrs[output]
                new_dist_attr.set_output_dist_attr(output, out_dist_attr)
        self._dist_context.set_op_dist_attr_for_program(op, new_dist_attr)