dist_softmax.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import register_distributed_operator_impl
C
caozhou 已提交
19
from .common import is_parameter_related
20 21
from ..utils import is_dim_shard
from ..utils import compute_compatible_and_update_dim_mapping
22
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
23 24 25 26
from ..cost import build_comp_desc_from_dist_op, build_dp_costs
from ..cost import build_comp_costs_from_descs
from ..cost import SoftmaxOpCost, SoftmaxGradOpCost
from paddle.distributed.fleet.meta_optimizers.common import OpRole
27 28


29
class DistributedSoftmax(DistributedOperatorImplContainer):
30 31
    def __init__(self, op_type):
        super(DistributedSoftmax, self).__init__(op_type)
32 33


34
register_distributed_operator_impl_container(DistributedSoftmax("softmax"))
35 36 37 38


class DistributedSoftmaxImpl(DistributedOperatorImpl):
    def __init__(self, name):
39
        super(DistributedSoftmaxImpl, self).__init__(name)
40
        self._forward_implemented = False
41
        self._backward_implemented = False
42

C
caozhou 已提交
43 44 45 46 47 48 49 50 51 52 53
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
54 55 56
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
C
caozhou 已提交
57
        processes = dist_op.dist_attr.process_mesh.processes
58 59 60
        cost_mapping = build_comp_costs_from_descs(
            SoftmaxOpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
61 62 63 64 65 66 67

        res_cost = [cost_mapping]
        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
68 69 70
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
C
caozhou 已提交
71 72 73
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
74 75 76
        cost_mapping = build_comp_costs_from_descs(
            SoftmaxGradOpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
77 78 79 80 81 82 83 84 85
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and is_parameter_related(
86 87
                    varname, main_block
                ):
C
caozhou 已提交
88 89 90 91 92 93 94 95 96
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
97 98 99 100 101 102 103 104 105
                        build_dp_costs(
                            res,
                            dist_op,
                            ctx,
                            var_names,
                            attrs,
                            parallel_axis,
                            cluster,
                        )
C
caozhou 已提交
106 107 108

        return res

109 110 111
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
112 113 114 115
        x_name = op_desc.input('X')[0]
        axis = op_desc.attr('axis')
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)

116 117
        # if axis != -1 and axis != len(x_dims_mapping) - 1:
        #     return False
118 119 120 121 122 123

        if is_dim_shard(x_dims_mapping[axis]):
            return False

        return True

124 125 126
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
127 128 129 130
        out_name = op_desc.output('Out')[0]
        axis = op_desc.attr('axis')
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

131 132
        # if axis != -1 and axis != len(out_dims_mapping) - 1:
        #     return False
133 134 135 136 137 138

        if is_dim_shard(out_dims_mapping[axis]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
139
    def is_auto_compatible(self, dist_op):
140 141 142
        if (not self.is_input_compatible(dist_op)) or (
            not self.is_output_compatible(dist_op)
        ):
143 144
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
145 146 147 148 149 150 151
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        axis = op_desc.attr('axis')
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
152 153
        # if axis != -1 and axis != len(x_dims_mapping) - 1:
        #     return False
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
154 155 156 157 158 159

        if x_dims_mapping != out_dims_mapping:
            return False

        return True

160
    def update_dims_mapping(self, dist_op):
161
        changed = False
162 163
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
164 165 166 167 168 169 170
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
171 172
                [x_dims_mapping, out_dims_mapping], [i, i]
            )
173 174 175 176 177
            if dim_changed:
                changed = True

        return changed

178 179 180 181
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

182 183
    @staticmethod
    def backward(ctx, *args, **kwargs):
184
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
185

186 187

register_distributed_operator_impl(
188 189
    "softmax", DistributedSoftmaxImpl("replicate_last_axis")
)