init.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

41 42 43 44 45 46 47 48 49 50
namespace paddle {
namespace platform {

void ParseCommandLineFlags(int argc, char **argv, bool remove) {
  google::ParseCommandLineFlags(&argc, &argv, remove);
}

}  // namespace platform
}  // namespace paddle

D
dzhwinter 已提交
51 52 53
namespace paddle {
namespace framework {

54 55 56 57
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
58
std::once_flag gflags_init_flag;
59
std::once_flag glog_init_flag;
X
Xin Pan 已提交
60
std::once_flag p2p_init_flag;
61
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
62

63
bool InitGflags(std::vector<std::string> args) {
64
  bool successed = false;
D
dzhwinter 已提交
65
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
66
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
67 68 69 70 71
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
72 73
    args.insert(args.begin(), "dummy");
    std::vector<char *> argv;
D
dzhwinter 已提交
74
    std::string line;
75 76 77 78
    int argc = args.size();
    for (auto &arg : args) {
      argv.push_back(const_cast<char *>(arg.data()));
      line += arg;
D
dzhwinter 已提交
79 80
      line += ' ';
    }
L
Leo Chen 已提交
81 82
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
83 84

    char **arr = argv.data();
D
dzhwinter 已提交
85
    google::ParseCommandLineFlags(&argc, &arr, true);
86
    successed = true;
87 88

    VLOG(1) << "After Parse: argc is " << argc;
D
dzhwinter 已提交
89
  });
90
  return successed;
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
G
GaoWei8 已提交
101 102
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]));
103 104 105 106
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
107
          platform::CUDADeviceGuard guard(devices[i]);
108 109 110 111 112 113 114 115
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
138
void InitDevices(bool init_p2p) {
139 140 141
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
142
  /*Init all available devices by default */
143
  std::vector<int> devices;
144
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
145
  try {
146 147
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
148 149
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
150
  }
D
dzhwinter 已提交
151
#endif
152
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
153 154
}

155 156 157 158
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
159 160 161
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
162 163 164
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
165

166 167 168 169 170 171 172
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
173

174
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
175
  platform::SetNumThreads(FLAGS_paddle_num_threads);
176
#endif
T
tensor-tang 已提交
177

T
tensor-tang 已提交
178
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
179
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
180 181 182 183
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
184 185

// Throw some informations when CPU instructions mismatch.
186 187 188 189 190 191
#define AVX_GUIDE(compiletime, runtime)                                  \
  PADDLE_THROW(platform::errors::Unavailable(                            \
      "This version is compiled on higher instruction(" #compiletime     \
      ") system, you may encounter illegal instruction error running on" \
      " your local CPU machine. Please reinstall the " #runtime          \
      " version or compile from source code."))
192 193

#ifdef __AVX512F__
T
tensor-tang 已提交
194 195
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
196
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
197
    } else if (platform::MayIUse(platform::avx)) {
198 199 200 201 202
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
203
#endif
204 205

#ifdef __AVX2__
T
tensor-tang 已提交
206 207
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
208 209 210 211
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
212 213
  }
#endif
214 215

#ifdef __AVX__
T
tensor-tang 已提交
216
  if (!platform::MayIUse(platform::avx)) {
217
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
218
  }
219 220
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
221 222

#endif
223 224
}

C
chengduo 已提交
225
#ifndef _WIN32
226
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
227 228
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
229 230
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
231 232 233 234 235
      LOG(WARNING) << "Warning: PaddlePaddle catches a failure signal, it may "
                      "not work properly\n";
      LOG(WARNING) << "You could check whether you killed PaddlePaddle "
                      "thread/process accidentally or report the case to "
                      "PaddlePaddle\n";
236 237 238
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

239
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
240 241 242 243 244 245 246 247 248
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
249
void InitGLOG(const std::string &prog_name) {
250 251 252 253
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
254
#ifndef _WIN32
255 256
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
257
#endif
258
  });
Y
Yang Yu 已提交
259 260
}

D
dzhwinter 已提交
261 262
}  // namespace framework
}  // namespace paddle