fusion_rnn_mkldnn.h 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Leo Chen 已提交
15 16
#pragma once

17 18 19 20 21 22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using paddle::framework::Tensor;
using paddle::platform::CreateKey;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::MKLDNNMemDesc;
L
Leo Chen 已提交
27
using phi::CPUContext;
28 29 30 31 32 33 34
using platform::to_void_cast;

template <typename T, typename T_alg, typename T_out = T>
class RNNMKLDNNHandler : public platform::MKLDNNHandlerT<T, T_alg> {
 public:
  RNNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                   const platform::MKLDNNDeviceContext& dev_ctx,
35 36 37 38 39 40 41 42 43 44 45 46
                   const dnnl::engine mkldnn_engine,
                   platform::Place cpu_place,
                   const LoDTensor* input,
                   const Tensor* weight_h,
                   const Tensor* h0,
                   const bool is_reverse,
                   const int64_t N,
                   const int64_t Ti,
                   const int64_t IC,
                   const int64_t OC,
                   const int64_t G,
                   const std::string& unique_name)
47
      : platform::MKLDNNHandlerT<T, T_alg>(
48 49 50
            dev_ctx,
            dev_ctx.GetEngine(),
            cpu_place,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>(), Ti)),
        N(N),
        Ti(Ti),
        IC(IC),
        OC(OC),
        G(G) {
    // Create memory key without Ti because weights, bias and h0 memories
    // do not depend on Ti size but primitive and input/output memory do
    memory_key_ = platform::ExtendKeyWithThreadInfoIfNeeded(
        dev_ctx, CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>()));

    // Is it int8 kernel
    const bool is_INT8 = std::is_same<T, uint8_t>::value;

    if (is_INT8) {
      // Int8 attributes
      const float scale_data = ctx.Attr<float>("Scale_data");
      const float shift_data = ctx.Attr<float>("Shift_data");
      const auto scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

      const int weights_scale_mask =
          0 +
          (1 << 3)  // bit, indicating the unique scales for `g` dim in `ldigo`
          +
          (1 << 4);  // bit, indicating the unique scales for `o` dim in `ldigo`

      attr_.set_rnn_data_qparams(scale_data, shift_data);
      attr_.set_rnn_weights_qparams(weights_scale_mask, scale_weights);
    }
  }

  bool is_NTC() {
    return (platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc()) ==
            dnnl::memory::format_tag::ntc);
  }

87 88 89 90
  void reorderRNNdata(void* input_data,
                      void* output_data,
                      std::vector<size_t> lod,
                      const bool is_reverse,
91 92 93 94 95 96 97 98 99
                      platform::RNNReorderType reorder_type) {
    switch (reorder_type) {
      // Reorder input memory [WORDS, C] + LoD -> [N, T, C]
      case platform::RNNReorderType::PP_NTC: {
        auto* input_data_iter = reinterpret_cast<T*>(input_data);
        auto* output_data_iter = reinterpret_cast<T*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]) * IC;
          const auto offset = is_reverse ? (Ti * IC - num_elements) : 0;
100 101
          memcpy(output_data_iter + n * Ti * IC + offset,
                 input_data_iter,
102 103 104 105 106 107 108 109 110 111 112 113 114
                 sizeof(T) * num_elements);
          input_data_iter += num_elements;
        }
      } break;
      // Reorder input memory [WORDS, C] + LoD -> [T, N, C]
      case platform::RNNReorderType::PP_TNC: {
        auto* input_data_iter = reinterpret_cast<T*>(input_data);
        auto* output_data_iter = reinterpret_cast<T*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]);
          const auto offset = is_reverse ? (Ti - num_elements) : 0;
          for (size_t t = 0; t < num_elements; ++t) {
            memcpy(output_data_iter + (t + offset) * N * IC + n * IC,
115 116
                   input_data_iter,
                   sizeof(T) * IC);
117 118 119 120 121 122 123 124 125 126 127
            input_data_iter += IC;
          }
        }
      } break;
      // Reorder output values to PP format [N, T, C] -> [WORDS, C]
      case platform::RNNReorderType::NTC_PP: {
        auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
        auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]) * OC;
          const auto offset = is_reverse ? (Ti * OC - num_elements) : 0;
128 129
          memcpy(output_data_iter,
                 input_data_iter + n * Ti * OC + offset,
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
                 sizeof(T_out) * num_elements);
          output_data_iter += num_elements;
        }
      } break;
      // Reorder output values to PP format [T, N, C] -> [WORDS, C]
      case platform::RNNReorderType::TNC_PP: {
        auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
        auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = lod[n + 1] - lod[n];
          const auto offset = is_reverse ? (Ti - num_elements) : 0;
          for (size_t t = 0; t < num_elements; ++t) {
            memcpy(output_data_iter,
                   input_data_iter + (t + offset) * N * OC + n * OC,
                   sizeof(T_out) * OC);
            output_data_iter += OC;
          }
        }
      } break;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireInputMemoryWithReorder(
      const LoDTensor* input, const bool is_reverse) {
    const auto name = this->key_ + "@input_mem";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));

    if (!memory_p) {
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_desc(),
                                                this->engine_);
      this->dev_ctx_.SetBlob(name, memory_p);
    }

    const auto& input_lod = input->lod()[0];
    auto* x_data = to_void_cast(input->data<T>());

    auto* x_onednn_data = memory_p->get_data_handle();
    memset(x_onednn_data, 0, sizeof(T) * N * Ti * IC);

    if (platform::GetMKLDNNFormat(this->fwd_pd_->src_desc()) ==
        dnnl::memory::format_tag::ntc) {
172 173 174 175
      reorderRNNdata(x_data,
                     x_onednn_data,
                     input_lod,
                     is_reverse,
176 177
                     platform::RNNReorderType::PP_NTC);
    } else {
178 179 180 181
      reorderRNNdata(x_data,
                     x_onednn_data,
                     input_lod,
                     is_reverse,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                     platform::RNNReorderType::PP_TNC);
    }
    return memory_p;
  }

  std::shared_ptr<dnnl::memory> AcquireOutputMemory() {
    const auto name = this->key_ + "@output_mem";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));

    if (!memory_p) {
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->dst_desc(),
                                                this->engine_);
      this->dev_ctx_.SetBlob(name, memory_p);
    }
    return memory_p;
  }

  // TODO(grygielski) H0 is for now persistable
  // TODO(jczaja) H0 should be updated each iter and of T type (Fusion pass does
  // not support in yet)
203
  template <typename U>
204 205 206 207 208 209 210 211
  std::shared_ptr<dnnl::memory> AcquireH0Memory(const Tensor* h0) {
    const std::string h0_key = memory_key_ + "@h0";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(h0_key));

    if (!memory_p) {
      auto user_h0_memory = dnnl::memory();
      if (h0) {
212 213
        user_h0_memory = dnnl::memory(
            {{1, 1, N, OC}, MKLDNNGetDataType<U>(), MKLDNNMemoryFormat::ldnc},
214 215
            this->engine_,
            to_void_cast(h0->data<U>()));
216
      } else {
217 218 219 220
        user_h0_memory = dnnl::memory(
            {{1, 1, N, OC}, MKLDNNGetDataType<U>(), MKLDNNMemoryFormat::ldnc},
            this->engine_);
        memset(user_h0_memory.get_data_handle(), 0, sizeof(U) * N * OC);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      }
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_iter_desc(),
                                                this->engine_);

      auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
      dnnl::reorder(user_h0_memory, *memory_p, attr_)
          .execute(astream, user_h0_memory, *memory_p);

      this->dev_ctx_.SetBlob(h0_key, memory_p);
    }
    return memory_p;
  }

 protected:
  // RNN dimensions
  // N - Batch Size
  // Ti - Max sentence length
  // IC - Input Channels
  // OC - Output Channels
  // G  - Number of gates
  const int64_t N, Ti, IC, OC, G;

  // Memory size of weights, bias and h0 does not depend
  // on Ti size, thus we need another key to cache them
  std::string memory_key_;
  dnnl::primitive_attr attr_;
};
}  // namespace operators
}  // namespace paddle