cross_entropy_op.h 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/cross_entropy.h"
20
#include "paddle/fluid/platform/for_range.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
Q
Qiao Longfei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27
using Tensor = framework::Tensor;

28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class CrossEntropyOpKernel : public framework::OpKernel<T> {
30
 public:
D
dongzhihong 已提交
31
  void Compute(const framework::ExecutionContext& ctx) const override {
32 33 34
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* y = ctx.Output<Tensor>("Y");
35
    y->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
36

37
    int rank = x->dims().size();
38
    auto label_dims = labels->dims();
F
fengjiayi 已提交
39
    Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1);
40 41 42
    Tensor labels_2d, y_2d;
    if (label_dims.size() < rank) {
      labels_2d.ShareDataWith(*labels);
43
      labels_2d.Resize({phi::product(label_dims), 1});
44 45

      y_2d.ShareDataWith(*y);
46
      y_2d.Resize({phi::product(y->dims()), 1});
47 48 49 50 51

    } else {
      labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
      y_2d = framework::ReshapeToMatrix(*y, rank - 1);
    }
52

53
    int axis_dim = x->dims()[rank - 1];
54
    math::CrossEntropyFunctor<DeviceContext, T>()(
55 56 57 58 59 60 61
        ctx.template device_context<DeviceContext>(),
        &y_2d,
        &x_2d,
        &labels_2d,
        ctx.Attr<bool>("soft_label"),
        ctx.Attr<int>("ignore_index"),
        axis_dim);
Y
Yan Chunwei 已提交
62 63 64
  }
};

65
template <typename T>
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class XeSoftlabelGradFunctor {
 public:
  XeSoftlabelGradFunctor(T* dx,
                         const T* dy,     // NOLINT
                         const T* x,      // NOLINT
                         const T* label,  // NOLINT
                         size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

  HOSTDEVICE void operator()(size_t i) {
    auto row_ids = i / num_classes_;
    dx_[i] = -label_[i] * dy_[row_ids] / x_[i];
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const T* label_;
  size_t num_classes_;
};

template <typename T>
class XeGradFunctor {
 public:
  XeGradFunctor(T* dx,
                const T* dy,           // NOLINT
                const T* x,            // NOLINT
                const int64_t* label,  // NOLINT
95 96
                size_t num_classes,
                size_t ignore_index)
97 98 99 100 101 102
      : dx_(dx),
        dy_(dy),
        x_(x),
        label_(label),
        num_classes_(num_classes),
        ignore_index_(ignore_index) {}
103

Y
Yu Yang 已提交
104 105 106
  HOSTDEVICE void operator()(size_t sample_id) {
    auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id];
    for (size_t x_offset = sample_id * num_classes_;
107 108
         x_offset < (sample_id + 1) * num_classes_;
         ++x_offset) {
C
chengduoZH 已提交
109 110 111 112
      dx_[x_offset] = (x_offset != x_is_true_offset ||
                       label_[sample_id] == static_cast<int64_t>(ignore_index_))
                          ? static_cast<T>(0)
                          : -dy_[sample_id] / x_[x_offset];
113 114 115 116 117 118 119 120 121
    }
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const int64_t* label_;
  size_t num_classes_;
122
  size_t ignore_index_;
123 124 125
};

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
126
class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
Y
Yan Chunwei 已提交
127
 public:
D
dongzhihong 已提交
128
  void Compute(const framework::ExecutionContext& ctx) const override {
129 130 131 132
    auto* x = ctx.Input<Tensor>("X");
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* label = ctx.Input<Tensor>("Label");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
133
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
134

135 136 137 138
    // Following computation only depends on the last dimension size. So it's
    // unnecessary to convert tensors to 2-D views.
    int rank = x->dims().size();
    int64_t class_num = x->dims()[rank - 1];
139
    int64_t ignore_index = ctx.Attr<int>("ignore_index");
140
    if (ctx.Attr<bool>("soft_label")) {
141 142 143
      XeSoftlabelGradFunctor<T> functor(dx_data,
                                        dy->data<T>(),
                                        x->data<T>(),
144 145 146 147 148 149
                                        label->data<T>(),
                                        static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dx->numel()));
      for_range(functor);
150
    } else {
151 152 153 154 155 156
      XeGradFunctor<T> functor(dx_data,
                               dy->data<T>(),
                               x->data<T>(),
                               label->data<int64_t>(),
                               static_cast<size_t>(class_num),
                               static_cast<size_t>(ignore_index));
157 158 159 160
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dy->numel()));
      for_range(functor);
Q
Qiao Longfei 已提交
161 162 163 164
    }
  }
};

S
sneaxiy 已提交
165 166
template <typename T>
struct HardLabelCrossEntropyForwardFunctor {
167 168 169
  HardLabelCrossEntropyForwardFunctor(const T* x,
                                      T* y,
                                      T* match_x,
S
sneaxiy 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
                                      const int64_t* label,
                                      int64_t ignore_index,
                                      int64_t feature_size)
      : x_(x),
        y_(y),
        match_x_(match_x),
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto label = label_[idx];
    if (label != ignore_index_) {
183 184
      // don't update to PADDLE_ENFORCE_GE and PADDLE_ENFORCE_LT cause
      // can't use platform::errors::InvalidArgument in HOSTDEVICE
185 186 187 188
      PADDLE_ENFORCE(label >= 0 && label < feature_size_,
                     "Variable value (label) of "
                     "OP(fluid.layers.cross_entropy) expected >= 0 "
                     "and < %ld, but got %ld. Please check label value.",
189 190
                     feature_size_,
                     label);
191

S
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      auto match_x = x_[idx * feature_size_ + label];
      y_[idx] = -math::TolerableValue<T>()(real_log(match_x));
      match_x_[idx] = match_x;
    } else {
      y_[idx] = 0;
      match_x_[idx] = 0;  // any value is ok
    }
  }

  const T* x_;
  T* y_;
  T* match_x_;
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

S
sneaxiy 已提交
209 210
template <typename T>
struct HardLabelCrossEntropyBackwardFunctor {
211 212 213
  HardLabelCrossEntropyBackwardFunctor(T* dx,
                                       const T* dy,
                                       const T* match_x,
S
sneaxiy 已提交
214 215 216 217 218
                                       const int64_t* label,
                                       int64_t ignore_index,
                                       int64_t feature_size)
      : dx_(dx),
        dy_(dy),
S
sneaxiy 已提交
219
        match_x_(match_x),
S
sneaxiy 已提交
220 221 222 223 224 225 226 227 228
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto row_idx = idx / feature_size_;
    auto col_idx = idx % feature_size_;
    auto label = label_[row_idx];
    if (label == col_idx && label != ignore_index_) {
S
sneaxiy 已提交
229
      dx_[idx] = -dy_[row_idx] / match_x_[row_idx];
S
sneaxiy 已提交
230 231 232 233 234 235 236
    } else {
      dx_[idx] = 0;
    }
  }

  T* dx_;
  const T* dy_;
S
sneaxiy 已提交
237
  const T* match_x_;
S
sneaxiy 已提交
238 239 240 241 242 243 244 245 246
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
247 248
    auto* x = ctx.Input<Tensor>("X");
    auto* label = ctx.Input<Tensor>("Label");
S
sneaxiy 已提交
249
    auto* y = ctx.Output<Tensor>("Y");
S
sneaxiy 已提交
250 251 252 253
    auto* match_x = ctx.Output<Tensor>("MatchX");

    auto& x_dims = x->dims();
    auto feature_size = x_dims[x_dims.size() - 1];
254
    auto batch_size = phi::product(x->dims()) / feature_size;
S
sneaxiy 已提交
255 256 257 258 259

    auto* p_x = x->data<T>();
    auto* p_label = label->data<int64_t>();
    auto* p_y = y->mutable_data<T>(ctx.GetPlace());
    auto* p_match_x = match_x->mutable_data<T>(ctx.GetPlace());
S
sneaxiy 已提交
260 261 262

    auto ignore_index = ctx.Attr<int>("ignore_index");

S
sneaxiy 已提交
263 264 265 266
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), batch_size);
    for_range(HardLabelCrossEntropyForwardFunctor<T>(
        p_x, p_y, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
267 268 269 270 271 272 273 274 275
  }
};

template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
S
sneaxiy 已提交
276
    auto* match_x = ctx.Input<Tensor>("MatchX");
S
sneaxiy 已提交
277 278 279 280
    auto* label = ctx.Input<Tensor>("Label");

    auto* p_dx = dx->mutable_data<T>(ctx.GetPlace());
    auto* p_dy = dy->data<T>();
S
sneaxiy 已提交
281
    auto* p_match_x = match_x->data<T>();
S
sneaxiy 已提交
282 283 284 285 286
    auto* p_label = label->data<int64_t>();

    int64_t ignore_index = ctx.Attr<int>("ignore_index");
    int rank = dx->dims().size();
    int64_t feature_size = dx->dims()[rank - 1];
287
    int64_t batch_size = phi::product(dx->dims()) / feature_size;
S
sneaxiy 已提交
288 289 290 291 292

    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(),
        batch_size * feature_size);
    for_range(HardLabelCrossEntropyBackwardFunctor<T>(
S
sneaxiy 已提交
293
        p_dx, p_dy, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
294 295 296
  }
};

Q
Qiao Longfei 已提交
297 298
}  // namespace operators
}  // namespace paddle