input.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

姜永久 已提交
15
from paddle import _C_ops
16 17

from ...fluid.data_feeder import check_variable_and_dtype
姜永久 已提交
18
from ...fluid.framework import in_dygraph_mode
19 20
from ...fluid.layer_helper import LayerHelper
from ...static import Variable
21

22 23
__all__ = []

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

75
            import paddle
76
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
77
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
78
            # label.shape = [4]
Y
yukavio 已提交
79
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
80
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
81 82 83 84
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
85

86 87
    """

J
Jiabin Yang 已提交
88
    if in_dygraph_mode():
89
        return _C_ops.one_hot(x, num_classes)
90
    else:
姜永久 已提交
91 92 93 94 95 96 97 98
        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
        helper = LayerHelper("one_hot_v2", **locals())

        one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
        if not isinstance(num_classes, Variable):
            # user attribute
            inputs = {'X': x}
            attrs = {'depth': num_classes, 'allow_out_of_range': False}
99
        else:
姜永久 已提交
100 101 102 103 104 105 106 107 108 109 110
            num_classes.stop_gradient = True
            inputs = {'X': x, 'depth_tensor': num_classes}
            attrs = {'allow_out_of_range': False}
        helper.append_op(
            type="one_hot_v2",
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': one_hot_out},
            stop_gradient=True,
        )
        return one_hot_out
T
tangwei12 已提交
111 112 113


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
114
    r"""
115
    Used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
116 117 118

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
119

120 121 122
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
123 124

    .. code-block:: text
125

T
tangwei12 已提交
126
            x is a Tensor.
T
tangwei12 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
141
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
142 143 144 145 146 147

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
148
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
149 150
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
151
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
152
            In these cases, sparse must be False. Default: False.
153
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
154
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
155
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
156 157
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
158
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
159 160 161 162
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
163
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
164 165 166 167

    Examples:

        .. code-block:: python
168

T
tangwei12 已提交
169 170 171
            import paddle
            import paddle.nn as nn

172 173
            x0 = paddle.arange(3, 6).reshape((3, 1)).astype(paddle.int64)
            w0 = paddle.full(shape=(10, 3), fill_value=2).astype(paddle.float32)
T
tangwei12 已提交
174

T
tangwei12 已提交
175 176 177
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
178

T
tangwei12 已提交
179 180 181
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
182

T
tangwei12 已提交
183 184 185 186
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
187 188

    """
189 190 191 192 193 194 195
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (weight.shape[0] + padding_idx)
    )
196 197

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
198 199 200 201 202
        raise ValueError(
            "padding_idx must be within [-{}, {})".format(
                weight.shape[0], weight.shape[0]
            )
        )
203

Z
zyfncg 已提交
204
    if in_dygraph_mode():
205
        return _C_ops.embedding(x, weight, padding_idx, sparse)
T
tangwei12 已提交
206 207
    else:
        helper = LayerHelper('embedding', **locals())
208
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
209

210 211 212 213 214 215
        check_variable_and_dtype(
            x,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'embedding',
        )
T
tangwei12 已提交
216 217 218 219 220

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
221

222 223 224 225 226 227 228 229 230 231 232
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x, 'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx,
            },
        )
T
tangwei12 已提交
233
        return tmp