custom_relu_op.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>

#include "paddle/extension.h"

#define CHECK_CPU_INPUT(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")
#define CHECK_CUSTOM_INPUT(x) \
  PD_CHECK(x.is_custom_device(), #x " must be a custom Tensor.")

template <typename data_t>
void relu_cpu_forward_kernel(const data_t* x_data,
                             data_t* out_data,
                             int64_t x_numel) {
  PD_CHECK(x_data != nullptr, "x_data is nullptr.");
  PD_CHECK(out_data != nullptr, "out_data is nullptr.");
  for (int64_t i = 0; i < x_numel; ++i) {
    out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
  }
}

template <typename data_t>
void relu_cpu_backward_kernel(const data_t* grad_out_data,
                              const data_t* out_data,
                              data_t* grad_x_data,
                              int64_t out_numel) {
  for (int64_t i = 0; i < out_numel; ++i) {
    grad_x_data[i] =
        grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
  }
}

template <typename data_t>
void relu_cpu_double_backward_kernel(const data_t* out_data,
                                     const data_t* ddx_data,
                                     data_t* ddout_data,
                                     int64_t ddout_numel) {
  for (int64_t i = 0; i < ddout_numel; ++i) {
    ddout_data[i] =
        ddx_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
  }
}

std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
  CHECK_CPU_INPUT(x);
  auto out = paddle::empty_like(x);

  PD_DISPATCH_FLOATING_TYPES(
      x.type(), "relu_cpu_forward", ([&] {
        relu_cpu_forward_kernel<data_t>(
            x.data<data_t>(), out.data<data_t>(), x.numel());
      }));

  return {out};
}

std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor& x,
                                              const paddle::Tensor& out,
                                              const paddle::Tensor& grad_out) {
  auto grad_x = paddle::empty_like(x);

  PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
                               relu_cpu_backward_kernel<data_t>(
                                   grad_out.data<data_t>(),
                                   out.data<data_t>(),
                                   grad_x.data<data_t>(),
                                   out.size());
                             }));

  return {grad_x};
}

std::vector<paddle::Tensor> relu_cpu_double_backward(
    const paddle::Tensor& out, const paddle::Tensor& ddx) {
  CHECK_CPU_INPUT(out);
  CHECK_CPU_INPUT(ddx);
  auto ddout = paddle::empty(out.shape(), out.dtype(), out.place());

  PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_double_backward", ([&] {
                               relu_cpu_double_backward_kernel<data_t>(
                                   out.data<data_t>(),
                                   ddx.data<data_t>(),
                                   ddout.mutable_data<data_t>(out.place()),
                                   ddout.size());
                             }));

  return {ddout};
}

std::vector<paddle::Tensor> relu_custom_forward(const paddle::Tensor& x) {
  CHECK_CUSTOM_INPUT(x);
  auto out = paddle::relu(x);
  return {out};
}

std::vector<paddle::Tensor> relu_custom_backward(
    const paddle::Tensor& x,
    const paddle::Tensor& out,
    const paddle::Tensor& grad_out) {
  CHECK_CUSTOM_INPUT(x);
  CHECK_CUSTOM_INPUT(out);
  auto grad_x = paddle::empty_like(x, x.dtype(), x.place());
  auto ones = paddle::experimental::full_like(x, 1.0, x.dtype(), x.place());
  auto zeros = paddle::experimental::full_like(x, 0.0, x.dtype(), x.place());
  auto condition = paddle::experimental::greater_than(x, zeros);

  grad_x = paddle::multiply(grad_out, paddle::where(condition, ones, zeros));

  return {grad_x};
}

std::vector<paddle::Tensor> relu_custom_double_backward(
    const paddle::Tensor& out, const paddle::Tensor& ddx) {
  CHECK_CUSTOM_INPUT(out);
  auto ddout = paddle::empty(out.shape(), out.dtype(), out.place());
  auto ones =
      paddle::experimental::full_like(out, 1.0, out.dtype(), out.place());
  auto zeros =
      paddle::experimental::full_like(out, 0.0, out.dtype(), out.place());
  auto condition = paddle::experimental::greater_than(out, zeros);

  ddout = paddle::multiply(ddx, paddle::where(condition, ones, zeros));

  return {ddout};
}

std::vector<paddle::Tensor> ReluForward(const paddle::Tensor& x) {
  if (x.is_cpu()) {
    return relu_cpu_forward(x);
  } else if (x.is_custom_device()) {
    return relu_custom_forward(x);
  } else {
    PD_THROW("Not implemented.");
  }
}

std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
                                         const paddle::Tensor& out,
                                         const paddle::Tensor& grad_out) {
  if (x.is_cpu()) {
    return relu_cpu_backward(x, out, grad_out);
  } else if (x.is_custom_device()) {
    return relu_custom_backward(x, out, grad_out);
  } else {
    PD_THROW("Not implemented.");
  }
}

std::vector<paddle::Tensor> ReluDoubleBackward(const paddle::Tensor& out,
                                               const paddle::Tensor& ddx) {
  if (out.is_cpu()) {
    return relu_cpu_double_backward(out, ddx);
  } else if (out.is_custom_device()) {
    return relu_custom_double_backward(out, ddx);
  } else {
    PD_THROW("Not implemented.");
  }
}

std::vector<std::vector<int64_t>> ReluDoubleBackwardInferShape(
    const std::vector<int64_t>& out_shape,
    const std::vector<int64_t>& ddx_shape) {
  return {out_shape};
}

PD_BUILD_OP(custom_relu)
    .Inputs({"X"})
    .Outputs({"Out"})
    .SetKernelFn(PD_KERNEL(ReluForward));

PD_BUILD_GRAD_OP(custom_relu)
    .Inputs({"X", "Out", paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .SetKernelFn(PD_KERNEL(ReluBackward));

PD_BUILD_DOUBLE_GRAD_OP(custom_relu)
    .Inputs({"Out", paddle::Grad(paddle::Grad("X"))})
    .Outputs({paddle::Grad(paddle::Grad("Out"))})
    .SetKernelFn(PD_KERNEL(ReluDoubleBackward))
    .SetInferShapeFn(PD_INFER_SHAPE(ReluDoubleBackwardInferShape));