test_dy2static_ipu.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
import paddle
import paddle.fluid as fluid
from paddle.jit import to_static
from paddle.utils.cpp_extension import load
from paddle.optimizer.lr import LRScheduler
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramCache
import tempfile

SEED = 2022


class SimpleLayer(paddle.nn.Layer):

    def __init__(self, use_ipu=False):
        super(SimpleLayer, self).__init__()
        self.use_ipu = use_ipu
        self.conv = paddle.nn.Conv2D(in_channels=3,
                                     out_channels=1,
                                     kernel_size=2,
                                     stride=1)

    @to_static()
    def forward(self, x, target=None):
        x = self.conv(x)
        x = paddle.fluid.layers.flatten(x, axis=1)
        if target is not None:
            x = paddle.fluid.layers.softmax(x)
            loss = paddle.fluid.layers.cross_entropy(x, target)
            if self.use_ipu:
                loss = paddle.incubate.identity_loss(loss, 1)
            else:
                loss = paddle.mean(loss)
            return x, loss
        return x


class TestBase(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        paddle.disable_static()

    def _test(self, use_ipu=False):
        paddle.seed(SEED)
        np.random.seed(SEED)
        model = SimpleLayer(use_ipu)
        optim = paddle.optimizer.Adam(learning_rate=0.01,
                                      parameters=model.parameters())
        data = paddle.uniform((32, 3, 10, 10), dtype='float32')
        label = paddle.randint(0, 10, shape=[32], dtype='int64')

        if use_ipu:
            device = paddle.set_device('ipu')
            ipu_strategy = paddle.static.IpuStrategy()
            ipu_strategy.set_graph_config(num_ipus=1,
                                          is_training=True,
                                          micro_batch_size=1,
                                          enable_manual_shard=False)
            ipu_strategy.set_optimizer(optim)

        result = []
        for epoch in range(100):
            # ipu only needs call model() to do forward/backward/grad_update
            pred, loss = model(data, label)
            if not use_ipu:
                loss.backward()
                optim.step()
                optim.clear_grad()

            result.append(loss)

        if use_ipu:
            ipu_strategy.release_patch()

        return np.array(result)

    def test_training(self):
        ipu_loss = self._test(True).flatten()
        cpu_loss = self._test(False).flatten()

        self.assertTrue(np.allclose(ipu_loss, cpu_loss, atol=1e-4))


class TestSaveLoad(TestBase):

    @classmethod
    def setUpClass(cls):
        paddle.disable_static()
        cls.save_path = tempfile.TemporaryDirectory()

    @classmethod
    def tearDownClass(cls):
        cls.save_path.cleanup()

    def _test(self, use_ipu=False):
        paddle.seed(SEED)
        np.random.seed(SEED)
        model = SimpleLayer(use_ipu)
        optim = paddle.optimizer.Adam(learning_rate=0.01,
                                      parameters=model.parameters())
        data = paddle.uniform((32, 3, 10, 10), dtype='float32')
        label = paddle.randint(0, 10, shape=[32], dtype='int64')
        model_path = '{}/model_state_dict_{}.pdparams'.format(
            self.save_path, 'ipu' if use_ipu else 'cpu')
        optim_path = '{}/optim_state_dict_{}.pdopt'.format(
            self.save_path, 'ipu' if use_ipu else 'cpu')

        if use_ipu:
            device = paddle.set_device('ipu')
            ipu_strategy = paddle.static.IpuStrategy()
            ipu_strategy.set_graph_config(num_ipus=1,
                                          is_training=True,
                                          micro_batch_size=1,
                                          enable_manual_shard=False)
            ipu_strategy.set_optimizer(optim)

        result = []
        for epoch in range(100):
            # ipu only needs call model() to do forward/backward/grad_update
            pred, loss = model(data, label)
            if not use_ipu:
                loss.backward()
                optim.step()
                optim.clear_grad()

            result.append(loss)

        if use_ipu:
            paddle.fluid.core.IpuBackend.get_instance().weights_to_host()

        paddle.save(model.state_dict(), model_path)
        paddle.save(optim.state_dict(), optim_path)

        model.set_state_dict(paddle.load(model_path))
        optim.set_state_dict(paddle.load(optim_path))

        for epoch in range(100):
            # ipu only needs call model() to do forward/backward/grad_update
            pred, loss = model(data, label)
            if not use_ipu:
                loss.backward()
                optim.step()
                optim.clear_grad()

            result.append(loss)

        if use_ipu:
            ipu_strategy.release_patch()

        return np.array(result)


class TestPatch(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        paddle.disable_static()

    def test(self, use_ipu=False):
        old_getter = ProgramCache.__getitem__
        old_step = LRScheduler.step

        ipu_strategy = paddle.static.IpuStrategy()
        ipu_strategy.release_patch()

        reset_getter = ProgramCache.__getitem__
        reset_step = LRScheduler.step

        self.assertTrue(reset_getter is old_getter)
        self.assertTrue(reset_step is old_step)


if __name__ == "__main__":
    unittest.main()