layer.py 9.6 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
16
we want to make Paddle a plain Python package. The model config package defines
Y
Yu Yang 已提交
17
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30
    # use prediction instance where needed.
Y
Yu Yang 已提交
31
    parameters = paddle.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33
import collections
X
xuwei06 已提交
34
import copy
X
xuwei06 已提交
35
import re
X
xuwei06 已提交
36 37 38
import paddle.trainer_config_helpers.layers as v1_layers
import paddle.trainer.config_parser as cp
from paddle.proto.ModelConfig_pb2 import ModelConfig, SubModelConfig
X
xuwei06 已提交
39 40
from config_base import __convert_to_v2__
import config_base
Q
qiaolongfei 已提交
41

X
xuwei06 已提交
42
__all__ = ['data', 'parse_network']
Q
qiaolongfei 已提交
43

X
xuwei06 已提交
44

X
xuwei06 已提交
45
def __need_to_keep__(name):
46 47 48 49
    return name in [
        'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType',
        'layer_support'
    ]
Q
qiaolongfei 已提交
50 51


X
xuwei06 已提交
52 53
def __need_to_wrap__(name):
    return name not in ['AggregateLevel', 'ExpandLevel']
Q
qiaolongfei 已提交
54 55


X
xuwei06 已提交
56
def __convert_name__(inname):
57 58
    if __need_to_keep__(inname):
        return inname
X
xuwei06 已提交
59
    if inname == 'maxid_layer':
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]
X
xuwei06 已提交
73 74
    else:
        return inname
Y
Yu Yang 已提交
75 76


X
xuwei06 已提交
77 78 79 80
for name in v1_layers.__all__:
    obj = getattr(v1_layers, name)
    new_name = __convert_name__(name)
    if callable(obj) and __need_to_wrap__(name):
X
xuwei06 已提交
81
        globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
Q
qiaolongfei 已提交
82
    else:
X
xuwei06 已提交
83 84 85 86 87 88 89 90
        globals()[new_name] = obj
    __all__.append(new_name)


def __data_layer__(name, type, **kwargs):
    l = v1_layers.data_layer(name, type.dim, **kwargs)
    l.data_type = type
    return l
Q
qiaolongfei 已提交
91

X
xuwei06 已提交
92

X
xuwei06 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
def __map_data_docstr__(doc):
    doc = re.sub(r'(data = [^\)]+)\).*',
                 "data = paddle.layer.data(name=\"input\", "
                 "type=paddle.data_type.dense_vector(1000))", doc)

    doc = re.sub(r':param size:.*', ':param type: Data type of this data layer',
                 doc)
    doc = re.sub(r':type size:.*', ":type size: paddle.v2.data_type.InputType",
                 doc)
    return doc


__data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
Q
qiaolongfei 已提交
106

X
xuwei06 已提交
107
data = __convert_to_v2__(__data_layer__, 'name', __name__)
Q
qiaolongfei 已提交
108 109


110
def __get_used_layers__(output_layers):
X
xuwei06 已提交
111 112
    layer_names = set()
    parents = {}
X
xuwei06 已提交
113

X
xuwei06 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def add_parent(child, parent):
        if child in parents:
            parents[child].append(parent)
        else:
            parents[child] = [parent]

    def add_additional_parents():
        for sub_model in cp.g_config.model_config.sub_models:
            if sub_model.name == 'root':
                continue
            for link in sub_model.in_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(sub_model.name, link.layer_name)
            for link in sub_model.out_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(link.link_name, sub_model.name)
            for mem in sub_model.memories:
                if mem.boot_layer_name:
                    add_parent(mem.layer_name, mem.boot_layer_name)
                add_parent(mem.link_name, mem.layer_name)

    def dfs_travel(layer_name):
        if layer_name in layer_names:
            return
        layer_names.add(layer_name)
        layer = cp.g_layer_map[layer_name]

        for inp in layer.inputs:
            dfs_travel(inp.input_layer_name)
        if layer.name in parents:
            for p in parents[layer.name]:
                dfs_travel(p)

    add_additional_parents()

    for layer in output_layers:
        dfs_travel(layer.full_name)

    return layer_names


155
def __get_used_parameters__(layer_names, sub_models):
X
xuwei06 已提交
156 157 158 159 160 161 162 163
    parameter_names = set()
    for name in layer_names:
        l = cp.g_layer_map[name]
        for inp in l.inputs:
            if inp.input_parameter_name:
                parameter_names.add(inp.input_parameter_name)
        if l.bias_parameter_name:
            parameter_names.add(l.bias_parameter_name)
164 165 166 167 168 169

    for sub_model in sub_models:
        for mem in sub_model.memories:
            if mem.HasField("boot_bias_parameter_name"):
                parameter_names.add(mem.boot_bias_parameter_name)

X
xuwei06 已提交
170 171 172 173 174 175 176 177
    return parameter_names


def __get_used_submodels__(layer_names):
    submodel_names = set()
    for submodel in cp.g_config.model_config.sub_models:
        if submodel.name in layer_names:
            submodel_names.add(submodel.name)
178 179
            if submodel.is_recurrent_layer_group:
                layer_names |= set(submodel.layer_names)
X
xuwei06 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    return submodel_names


def __get_used_evaluators__(layer_names):
    evaluator_names = set()
    for e in cp.g_config.model_config.evaluators:
        used = True
        for name in e.input_layers:
            if name not in layer_names:
                used = False
                break
        if used:
            evaluator_names.add(e.name)
    return evaluator_names


X
xuwei06 已提交
196 197
def __trim_submodel__(old_submodel, layer_names, input_layer_names,
                      output_layer_names, evaluator_names):
X
xuwei06 已提交
198 199 200

    submodel = SubModelConfig()
    submodel.name = old_submodel.name
X
xuwei06 已提交
201 202 203 204 205 206 207 208
    submodel.layer_names.extend(
        filter(lambda x: x in layer_names, old_submodel.layer_names))
    submodel.input_layer_names.extend(
        filter(lambda x: x in input_layer_names, submodel.layer_names))
    submodel.output_layer_names.extend(
        filter(lambda x: x in output_layer_names, submodel.layer_names))
    submodel.evaluator_names.extend(
        filter(lambda x: x in evaluator_names, old_submodel.evaluator_names))
X
xuwei06 已提交
209 210 211 212

    submodel.is_recurrent_layer_group = old_submodel.is_recurrent_layer_group
    submodel.reversed = old_submodel.reversed

X
xuwei06 已提交
213 214
    submodel.memories.extend(
        filter(lambda x: x.link_name in layer_names, old_submodel.memories))
X
xuwei06 已提交
215 216 217 218 219 220 221 222 223 224
    target_inlinkid = (old_submodel.target_inlinkid
                       if old_submodel.HasField('target_inlinkid') else -1)
    in_links = []
    for i, link in enumerate(old_submodel.in_links):
        if link.link_name in layer_names or i == target_inlinkid:
            in_links.append(link)
            if i == target_inlinkid:
                target_inlinkid = len(in_links) - 1
    submodel.in_links.extend(in_links)

X
xuwei06 已提交
225 226
    submodel.out_links.extend(
        filter(lambda x: x.link_name in layer_names, old_submodel.out_links))
X
xuwei06 已提交
227 228 229 230 231 232
    if old_submodel.HasField('generator'):
        submodel.generator.CopyFrom(old_submodel.generator)

    if old_submodel.HasField('target_inlinkid'):
        submodel.target_inlinkid = target_inlinkid
    return submodel
Q
qiaolongfei 已提交
233 234


X
xuwei06 已提交
235 236 237 238 239 240 241 242
def parse_network(output_layers, extra_layers=None):
    if not isinstance(output_layers, collections.Sequence):
        output_layers = [output_layers]
    if extra_layers is not None and not isinstance(extra_layers,
                                                   collections.Sequence):
        extra_layers = [extra_layers]
    else:
        extra_layers = []
Q
qiaolongfei 已提交
243

X
xuwei06 已提交
244 245 246 247 248 249
    layer_names = __get_used_layers__(output_layers + extra_layers)
    submodel_names = __get_used_submodels__(layer_names)
    submodel_names.add('root')
    evaluator_names = __get_used_evaluators__(layer_names)
    input_layer_names = set()
    output_layer_names = set()
Q
qiaolongfei 已提交
250

X
xuwei06 已提交
251 252
    model_config = ModelConfig()
    model_config.type = cp.g_config.model_config.type
253 254 255 256 257

    for layer in output_layers:
        model_config.output_layer_names.append(layer.full_name)
        output_layer_names.add(layer.full_name)

X
xuwei06 已提交
258 259 260 261 262
    for l in cp.g_config.model_config.layers:
        if l.name not in layer_names:
            continue
        model_config.layers.extend([l])
        if l.type == 'data':
263 264
            if l.name in model_config.output_layer_names:
                continue
X
xuwei06 已提交
265 266
            model_config.input_layer_names.append(l.name)
            input_layer_names.add(l.name)
Q
qiaolongfei 已提交
267

X
xuwei06 已提交
268 269 270
    for e in cp.g_config.model_config.evaluators:
        if e.name in evaluator_names:
            model_config.evaluators.extend([e])
Q
qiaolongfei 已提交
271

X
xuwei06 已提交
272 273
    for s in cp.g_config.model_config.sub_models:
        if s.name in submodel_names:
X
xuwei06 已提交
274 275
            s = __trim_submodel__(s, layer_names, input_layer_names,
                                  output_layer_names, evaluator_names)
X
xuwei06 已提交
276
            model_config.sub_models.extend([s])
L
Luo Tao 已提交
277

278 279 280 281 282 283 284
    parameter_names = __get_used_parameters__(layer_names,
                                              model_config.sub_models)

    for p in cp.g_config.model_config.parameters:
        if p.name in parameter_names:
            model_config.parameters.extend([p])

X
xuwei06 已提交
285
    return model_config
Y
Yu Yang 已提交
286 287


X
xuwei06 已提交
288
def get_layer(name):
X
xuwei06 已提交
289
    return config_base.__layer_map__.get(name)
Y
Yu Yang 已提交
290 291


X
xuwei06 已提交
292
cp.begin_parse()