test_lod_tensor.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19 20
from paddle.fluid.lod_tensor import create_lod_tensor, create_random_int_lodtensor
import numpy as np
21 22 23 24
import unittest


class TestLoDTensor(unittest.TestCase):
K
Kexin Zhao 已提交
25
    def test_pybind_recursive_seq_lens(self):
26
        tensor = fluid.LoDTensor()
K
Kexin Zhao 已提交
27 28 29 30 31 32 33 34
        recursive_seq_lens = []
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
        recursive_seq_lens = [[], [1], [3]]
        self.assertRaises(Exception, tensor.set_recursive_sequence_lengths,
                          recursive_seq_lens)
        recursive_seq_lens = [[0], [2], [3]]
        self.assertRaises(Exception, tensor.set_recursive_sequence_lengths,
                          recursive_seq_lens)
35

K
Kexin Zhao 已提交
36 37 38 39
        recursive_seq_lens = [[1, 2, 3]]
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         recursive_seq_lens)
40 41 42 43
        tensor.set(np.random.random([6, 1]), fluid.CPUPlace())
        self.assertTrue(tensor.has_valid_recursive_sequence_lengths())
        tensor.set(np.random.random([9, 1]), fluid.CPUPlace())
        self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
44

45 46
        # Each level's sum should be equal to the number of items in the next level
        # Moreover, last level's sum should be equal to the tensor height
K
Kexin Zhao 已提交
47 48 49 50
        recursive_seq_lens = [[2, 3], [1, 3, 1, 2, 2]]
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         recursive_seq_lens)
51 52
        tensor.set(np.random.random([8, 1]), fluid.CPUPlace())
        self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
K
Kexin Zhao 已提交
53 54
        recursive_seq_lens = [[2, 3], [1, 3, 1, 2, 1]]
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
55 56 57
        self.assertTrue(tensor.has_valid_recursive_sequence_lengths())
        tensor.set(np.random.random([9, 1]), fluid.CPUPlace())
        self.assertFalse(tensor.has_valid_recursive_sequence_lengths())
58 59

    def test_create_lod_tensor(self):
60
        # Create LoDTensor from a list
Z
Zeng Jinle 已提交
61 62
        data = [[np.int64(1), np.int64(2), np.int64(3)],
                [np.int64(3), np.int64(4)]]
K
Kexin Zhao 已提交
63 64 65 66 67 68 69 70
        wrong_recursive_seq_lens = [[2, 2]]
        correct_recursive_seq_lens = [[3, 2]]
        self.assertRaises(AssertionError, create_lod_tensor, data,
                          wrong_recursive_seq_lens, fluid.CPUPlace())
        tensor = create_lod_tensor(data, correct_recursive_seq_lens,
                                   fluid.CPUPlace())
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         correct_recursive_seq_lens)
Z
Zeng Jinle 已提交
71 72 73 74 75 76 77
        self.assertEqual(tensor._dtype(), core.VarDesc.VarType.INT64)
        self.assertEqual(tensor.shape(), [5, 1])
        self.assertTrue(
            np.array_equal(
                np.array(tensor),
                np.array([1, 2, 3, 3, 4]).reshape(tensor.shape()).astype(
                    'int64')))
78 79

        # Create LoDTensor from numpy array
Z
Zeng Jinle 已提交
80
        data = np.random.random([10, 1]).astype('float64')
K
Kexin Zhao 已提交
81 82 83 84
        recursive_seq_lens = [[2, 1], [3, 3, 4]]
        tensor = create_lod_tensor(data, recursive_seq_lens, fluid.CPUPlace())
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         recursive_seq_lens)
Z
Zeng Jinle 已提交
85 86 87
        self.assertEqual(tensor._dtype(), core.VarDesc.VarType.FP64)
        self.assertEqual(tensor.shape(), [10, 1])
        self.assertTrue(np.array_equal(np.array(tensor), data))
88 89

        # Create LoDTensor from another LoDTensor, they are differnt instances
K
Kexin Zhao 已提交
90 91 92 93 94 95 96
        new_recursive_seq_lens = [[2, 2, 1], [1, 2, 2, 3, 2]]
        new_tensor = create_lod_tensor(tensor, new_recursive_seq_lens,
                                       fluid.CPUPlace())
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         recursive_seq_lens)
        self.assertEqual(new_tensor.recursive_sequence_lengths(),
                         new_recursive_seq_lens)
97 98 99 100

    def test_create_random_int_lodtensor(self):
        # The shape of a word, commonly used in speech and NLP problem, is [1]
        shape = [1]
K
Kexin Zhao 已提交
101
        recursive_seq_lens = [[2, 3, 5]]
102 103 104
        dict_size = 10000
        low = 0
        high = dict_size - 1
K
Kexin Zhao 已提交
105
        tensor = create_random_int_lodtensor(recursive_seq_lens, shape,
106
                                             fluid.CPUPlace(), low, high)
K
Kexin Zhao 已提交
107 108
        self.assertEqual(tensor.recursive_sequence_lengths(),
                         recursive_seq_lens)
109 110
        self.assertEqual(tensor.shape(), [10, 1])

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def test_print_lodtensor(self):
        shape = [1]
        recursive_seq_lens = [[2, 3, 5]]
        dict_size = 100
        low = 0
        high = dict_size - 1
        tensor = create_random_int_lodtensor(recursive_seq_lens, shape,
                                             fluid.CPUPlace(), low, high)
        print(tensor)
        self.assertTrue(isinstance(str(tensor), str))

        if core.is_compiled_with_cuda():
            gtensor = create_random_int_lodtensor(recursive_seq_lens, shape,
                                                  fluid.CUDAPlace(0), low, high)
            print(gtensor)
            self.assertTrue(isinstance(str(gtensor), str))

6
633WHU 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def test_dlpack_support(self):
        tensor = fluid.create_lod_tensor(
            np.array([[1], [2], [3], [4]]).astype('int'), [[1, 3]],
            fluid.CPUPlace())
        dltensor = tensor._to_dlpack()
        tensor_from_dlpack = fluid.core.from_dlpack(dltensor)
        self.assertTrue(isinstance(tensor_from_dlpack, fluid.core.Tensor))
        self.assertTrue(
            np.array_equal(
                np.array(tensor_from_dlpack),
                np.array([[1], [2], [3], [4]]).astype('int')))
        # when build with cuda
        if core.is_compiled_with_cuda():
            gtensor = fluid.create_lod_tensor(
                np.array([[1], [2], [3], [4]]).astype('int'), [[1, 3]],
                fluid.CUDAPlace(0))
            gdltensor = gtensor._to_dlpack()
            gtensor_from_dlpack = fluid.core.from_dlpack(gdltensor)
            self.assertTrue(isinstance(gtensor_from_dlpack, fluid.core.Tensor))
            self.assertTrue(
                np.array_equal(
                    np.array(gtensor_from_dlpack),
                    np.array([[1], [2], [3], [4]]).astype('int')))

152 153 154

if __name__ == '__main__':
    unittest.main()