grad_scaler.py 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16
from collections import defaultdict
17
from enum import Enum
18

19
import numpy as np
20

21
from paddle import _C_ops, _legacy_C_ops
22 23 24 25 26 27 28 29 30 31
from paddle.fluid import core, in_dygraph_mode
from paddle.fluid.data_feeder import check_type
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _dygraph_tracer, dygraph_only


class OptimizerState(Enum):
    INIT = 0
    UNSCALED = 1
    STEPPED = 2
32 33


34 35 36 37
def _refresh_optimizer_state():
    return {"state": OptimizerState.INIT}


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class AmpScaler:
    """
    AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
    mode. It controls the scaling of loss, helps avoiding numerical overflow.
    The object of this class has seventeen methods `scale()`, `unscale_()`, `minimize()` and `get`/`set` api of parameters.

    `scale()` is used to multiply the loss by a scale ratio.
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling.

    Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in
    imperative mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
        An AmpScaler object.

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
        model = paddle.nn.Conv2D(3, 2, 3)
        optimizer = paddle.optimizer.SGDOptimizer(
                learning_rate=0.01, parameter_list=model.parameters())
        scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
        data = paddle.to_tensor(data)
        with paddle.amp.amp_guard():
            conv = model(data)
            loss = paddle.mean(conv)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
    """

    @dygraph_only
    def __init__(
        self,
        enable=True,
        init_loss_scaling=2.0**15,
        incr_ratio=2.0,
        decr_ratio=0.5,
        incr_every_n_steps=1000,
        decr_every_n_nan_or_inf=1,
        use_dynamic_loss_scaling=True,
    ):

        tracer = _dygraph_tracer()
        if not tracer:
            raise ValueError(
                "current_tracer is None, maybe it is not in imperative mode."
            )

        if enable and not (
            tracer._expected_place.is_gpu_place()
            or tracer._expected_place.is_xpu_place()
            or tracer._expected_place.is_mlu_place()
            or tracer._expected_place.is_npu_place()
            or tracer._expected_place.is_custom_place()
        ):
            warnings.warn(
                'AmpScaler can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace and CustomPlace, current place is %s, so it makes no effect.'
                % tracer._expected_place
            )
            enable = False

        self._enable = enable

        if self._enable:
            assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
            assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."

            self._init_loss_scaling = init_loss_scaling
            self._incr_ratio = incr_ratio
            self._decr_ratio = decr_ratio
            self._incr_every_n_steps = incr_every_n_steps
            self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
            self._incr_count = 0
            self._decr_count = 0
            self._use_dynamic_loss_scaling = use_dynamic_loss_scaling

            self._found_inf = to_variable(np.array([0]).astype(np.bool_))
            self._temp_found_inf_fp16 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._temp_found_inf_bf16 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._temp_found_inf_fp32 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._scale = to_variable(
                np.array([self._init_loss_scaling]).astype(np.float32)
            )
            self._cache_founf_inf = None
            self._optimizer_states = defaultdict(_refresh_optimizer_state)

    def scale(self, var):
        """
        Multiplies a Tensor by the scale factor and returns scaled outputs.
        If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.

        Args:
            var (Tensor):  The Tensor to scale.
        Returns:
            The scaled Tensor or original Tensor.

        Examples:

            .. code-block:: python

                import numpy as np
                import paddle

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                model = paddle.nn.Conv2D(3, 2, 3)
                optimizer = paddle.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
                data = paddle.to_tensor(data)
                with paddle.amp.amp_guard():
                    conv = model(data)
                    loss = paddle.mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled)
        """
        check_type(var, "var", core.VarBase, 'AmpScaler.scale()')

        if not self._enable:
            return var

        return var * self._scale

    def minimize(self, optimizer, *args, **kwargs):
        """
        This function is similar as `Optimizer.minimize()`, which performs parameters updating.

        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
            kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.

        Examples:

            .. code-block:: python

                import numpy as np
                import paddle

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                model = paddle.nn.Conv2D(3, 2, 3)
                optimizer = paddle.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
                data = paddle.to_tensor(data)
                with paddle.amp.amp_guard():
                    conv = model(data)
                    loss = paddle.mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled)
        """
        if not self._enable:
            return optimizer.minimize(*args, **kwargs)

        optimizer_state = self._optimizer_states[id(optimizer)]

        #  unscale the grad
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)

        optimize_ops, params_grads = (None, None)

231 232 233 234 235 236 237 238 239 240
        if hasattr(optimizer, "_set_auxiliary_var"):
            optimizer._set_auxiliary_var('found_inf', self._found_inf)
            optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
            self._cache_founf_inf = optimizer._get_auxiliary_var('found_inf')
        else:
            if self._found_inf:
                self._cache_founf_inf = True
            else:
                optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
                self._cache_founf_inf = False
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

        if self._use_dynamic_loss_scaling:
            # uopdate the scale
            self._update()

        self._optimizer_states = defaultdict(_refresh_optimizer_state)

        return optimize_ops, params_grads

    def _unscale(self, optimizer):
        """
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.
        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
        Returns:
            The unscaled parameters or original parameters.
        """
        if not self._enable:
            return

        optimizer_state = self._optimizer_states[id(optimizer)]

        if optimizer_state["state"] is OptimizerState.UNSCALED:
            raise RuntimeError(
                "unscale_() has already been called on this optimizer since the last update()."
            )
        elif optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError("unscale_() is being called after step().")

        if getattr(optimizer, '_param_groups', None) and isinstance(
            optimizer._param_groups[0], dict
        ):
            param_grads = []
            param_grads_fp16 = []
            param_grads_bf16 = []
            param_grads_fp32 = []
            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
                        if (
                            param._grad_ivar().dtype
                            == core.VarDesc.VarType.FP16
                        ):
                            param_grads_fp16.append(param._grad_ivar())
                        elif (
                            param._grad_ivar().dtype
                            == core.VarDesc.VarType.BF16
                        ):
                            param_grads_bf16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
        else:
            if in_dygraph_mode():
                # It is very time-consuming to call c++ functions in a loop on the python side.
                # We put this part of the code on the c++ side to improve the speed in eager mode.
                (
                    param_grads_fp16,
                    param_grads_bf16,
                    param_grads_fp32,
                ) = core.eager.get_grads_lists(optimizer._parameter_list)
            else:
                # Keep the original code to support legacy mode.
                # Delete the else branch when the legacy mode exits.
                param_grads = [
                    param._grad_ivar()
                    for param in optimizer._parameter_list
                    if param._grad_ivar() is not None
                ]
                param_grads_fp16 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.FP16
                ]
                param_grads_bf16 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.BF16
                ]
                param_grads_fp32 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.FP32
                ]
        if core.is_compiled_with_npu():
            float_status = _legacy_C_ops.alloc_float_status()
            _legacy_C_ops.clear_float_status(float_status, float_status)

            if len(param_grads_fp16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp16,
                    self._scale,
                    float_status,
                    param_grads_fp16,
                    self._temp_found_inf_fp16,
                )
338 339 340
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp16
                )
341 342 343 344 345 346 347 348
            if len(param_grads_bf16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_bf16,
                    self._scale,
                    float_status,
                    param_grads_bf16,
                    self._temp_found_inf_bf16,
                )
349 350 351
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_bf16
                )
352 353 354 355 356 357 358 359
            if len(param_grads_fp32):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp32,
                    self._scale,
                    float_status,
                    param_grads_fp32,
                    self._temp_found_inf_fp32,
                )
360 361 362
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp32
                )
363 364 365 366 367 368 369 370
        else:
            if len(param_grads_fp16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp16,
                    self._scale,
                    param_grads_fp16,
                    self._temp_found_inf_fp16,
                )
371 372 373
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp16
                )
374 375 376 377 378 379 380
            if len(param_grads_bf16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_bf16,
                    self._scale,
                    param_grads_bf16,
                    self._temp_found_inf_bf16,
                )
381 382 383
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_bf16
                )
384 385 386 387 388 389 390
            if len(param_grads_fp32):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp32,
                    self._scale,
                    param_grads_fp32,
                    self._temp_found_inf_fp32,
                )
391 392 393
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp32
                )
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

        optimizer_state["state"] = OptimizerState.UNSCALED

    def _update(self):
        """
        Updates the loss_scaling.
        """
        if not self._enable:
            return

        if self._cache_founf_inf:
            self._incr_count = 0
            self._decr_count = self._decr_count + 1
            if self._decr_count == self._decr_every_n_nan_or_inf:
                print(
                    'Found inf or nan, current scale is: {}, decrease to: {}*{}'.format(
                        float(self._scale),
                        float(self._scale),
                        float(self._decr_ratio),
                    )
                )
                self._scale = self._scale * self._decr_ratio
                self._decr_count = 0
        else:
            self._decr_count = 0
            self._incr_count = self._incr_count + 1
            if self._incr_count == self._incr_every_n_steps:
                self._scale = self._scale * self._incr_ratio
                self._incr_count = 0

        return

    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        """
        return self._enable

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        """
        return self._use_dynamic_loss_scaling

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        """
        return self._init_loss_scaling

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
            new_init_loss_scaling(int):  The new_init_loss_scaling used to update initial loss scaling factor.s
        """
        self._init_loss_scaling = new_init_loss_scaling
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32)
        )

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        """
        return self._incr_ratio

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        """
        assert new_incr_ratio > 1.0, "The new_incr_ratio must be > 1.0."
        self._incr_ratio = new_incr_ratio

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        return self._decr_ratio

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        assert new_decr_ratio < 1.0, "The new_decr_ratio must be < 1.0."
        self._decr_ratio = new_decr_ratio

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        return self._incr_every_n_steps

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        self._incr_every_n_steps = new_incr_every_n_steps

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        return self._decr_every_n_nan_or_inf

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        self._decr_every_n_nan_or_inf = new_decr_every_n_nan_or_inf

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
        """
        return (
            {
                "scale": self._scale.numpy(),
                "incr_ratio": self._incr_ratio,
                "decr_ratio": self._decr_ratio,
                "incr_every_n_steps": self._incr_every_n_steps,
                "decr_every_n_nan_or_inf": self._decr_every_n_nan_or_inf,
                "incr_count": self._incr_count,
                "decr_count": self._decr_count,
                "use_dynamic_loss_scaling": self._use_dynamic_loss_scaling,
            }
            if self._enable
            else {}
        )

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.

        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `AmpScaler.state_dict()`.
        """
        if not self._enable:
            return

        if len(state_dict) == 0:
            raise RuntimeError(
                "The input state dict is empty, possibly because it was saved "
                "from a disabled instance of GradScaler."
            )

        self._init_loss_scaling = state_dict["scale"][0]
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32)
        )
        self._incr_ratio = state_dict["incr_ratio"]
        self._decr_ratio = state_dict["decr_ratio"]
        self._incr_every_n_steps = state_dict["incr_every_n_steps"]
        self._decr_every_n_nan_or_inf = state_dict["decr_every_n_nan_or_inf"]
        self._incr_count = state_dict["incr_count"]
        self._decr_count = state_dict["decr_count"]
        self._use_dynamic_loss_scaling = state_dict["use_dynamic_loss_scaling"]


598 599
class GradScaler(AmpScaler):
    """
600
    GradScaler is used for Auto-Mixed-Precision training in dynamic graph mode.
601
    It controls the scaling of loss, helps avoiding numerical overflow.
602
    The object of this class has nineteen methods `scale()`, `unscale_()`, `minimize()`, `step()`, `update()` and `get`/`set` api of parameters.
603 604

    `scale()` is used to multiply the loss by a scale ratio.
605 606 607 608 609
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling, it equal to `step()` + `update()`.
    `step()` is similar as `optimizer.step()`, which performs parameters updating.
    `update` is used to update the loss_scaling.

610

611
    Commonly, it is used together with `paddle.amp.auto_cast` to achieve Auto-Mixed-Precision in
612 613 614 615 616
    dynamic graph mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
617
        incr_ratio(float, optional): The multiplier to use when increasing the loss
618
                        scaling. Default is 2.0.
619
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
620
                        the loss scaling. Default is 0.5.
621
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
622
                                steps with finite gradients. Default is 1000.
623
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
624 625 626
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
627
        An GradScaler object.
628 629 630

    Examples:

631
        .. code-block:: python
632

633
            import paddle
634

635 636 637 638
            model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
            optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
639

640 641 642
            with paddle.amp.auto_cast():
                conv = model(data)
                loss = paddle.mean(conv)
643 644

            scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
645
            scaled.backward()            # do backward
646
            scaler.minimize(optimizer, scaled)  # update parameters
647
            optimizer.clear_grad()
648 649
    """

650 651 652 653 654 655 656 657 658 659
    def __init__(
        self,
        enable=True,
        init_loss_scaling=2.0**15,
        incr_ratio=2.0,
        decr_ratio=0.5,
        incr_every_n_steps=1000,
        decr_every_n_nan_or_inf=2,
        use_dynamic_loss_scaling=True,
    ):
660
        super().__init__(
661 662 663 664 665 666 667 668
            enable,
            init_loss_scaling,
            incr_ratio,
            decr_ratio,
            incr_every_n_steps,
            decr_every_n_nan_or_inf,
            use_dynamic_loss_scaling,
        )
669 670 671

    def scale(self, var):
        """
672
        Multiplies a Tensor by the scale factor and returns scaled outputs.
673 674 675 676 677 678
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            var (Tensor):  The tensor to scale.
        Returns:
            The scaled tensor or original tensor.
679

680
        Examples:
L
Leo Chen 已提交
681

682
            .. code-block:: python
683

684 685 686 687 688 689
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
690

691 692 693
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
694

695
                scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
696
                scaled.backward()            # do backward
697
                scaler.minimize(optimizer, scaled)  # update parameters
698
                optimizer.clear_grad()
699
        """
700
        return super().scale(var)
701 702 703

    def minimize(self, optimizer, *args, **kwargs):
        """
704
        This function is similar as `optimizer.minimize()`, which performs parameters updating.
705

706
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
707
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
708 709 710 711 712 713

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
714
            kwargs: Keyword arguments, which will be forward to `optimizer.minimize()`.
715 716

        Examples:
L
Leo Chen 已提交
717

718 719
            .. code-block:: python

720 721 722 723 724 725
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
726

727 728 729
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
730

731
                scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
732
                scaled.backward()            # do backward
733
                scaler.minimize(optimizer, scaled)  # update parameters
734
                optimizer.clear_grad()
735
        """
736
        return super().minimize(optimizer, *args, **kwargs)
737

738 739 740
    def step(self, optimizer):
        """
        This function is similar as `optimizer.step()`, which performs parameters updating.
741

742
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
743
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
744 745 746 747 748

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Examples:
749

750
            .. code-block:: python
751

752 753
                # required: gpu
                import paddle
754

755 756 757 758 759 760 761
                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
762
                scaled = scaler.scale(loss)  # scale the loss
763
                scaled.backward()            # do backward
764 765
                scaler.step(optimizer)       # update parameters
                scaler.update()              # update the loss scaling ratio
766 767 768 769 770
                optimizer.clear_grad()
        """
        if not self._enable:
            return optimizer.step()

771 772 773
        optimizer_state = self._optimizer_states[id(optimizer)]
        if optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError(
774 775
                "step() has already been called since the last update()."
            )
776

777
        #  unscale the grad
778 779
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)
780

781 782 783 784 785 786 787 788 789 790
        if hasattr(optimizer, "_set_auxiliary_var"):
            optimizer._set_auxiliary_var('found_inf', self._found_inf)
            optimizer.step()
            self._cache_founf_inf = optimizer._get_auxiliary_var('found_inf')
        else:
            if self._found_inf:
                self._cache_founf_inf = True
            else:
                optimizer.step()
                self._cache_founf_inf = False
791

792 793 794 795 796 797 798 799
        optimizer_state["state"] = OptimizerState.STEPPED

        if not self._use_dynamic_loss_scaling:
            self._optimizer_states = defaultdict(_refresh_optimizer_state)

    def update(self):
        """
        Updates the loss_scaling.
800

801 802 803
        Examples:

            .. code-block:: python
804

805 806 807 808 809 810 811 812 813 814
                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
815
                scaled = scaler.scale(loss)     # scale the loss
816 817 818
                scaled.backward()               # do backward
                scaler.step(optimizer)          # update parameters
                scaler.update()                 # update the loss scaling ratio
819
                optimizer.clear_grad()
820 821 822
        """
        if not self._enable:
            return
823 824
        if self._use_dynamic_loss_scaling:
            self._update()
825 826 827 828 829
            self._optimizer_states = defaultdict(_refresh_optimizer_state)
        return

    def unscale_(self, optimizer):
        """
830
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).
831 832 833 834 835 836 837
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Returns:
            The unscaled parameters or original parameters.
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852
        Examples:

            .. code-block:: python

                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
853
                scaled = scaler.scale(loss)  # scale the loss
854 855 856
                scaled.backward()            # do backward
                scaler.unscale_(optimizer)    # unscale the parameter
                scaler.step(optimizer)
857 858
                scaler.update()
                optimizer.clear_grad()
859
        """
860
        return super()._unscale(optimizer)
861

862 863 864 865 866 867
    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
868

869 870 871
        Examples:
            .. code-block:: python

872
                # required: gpu,xpu
873 874 875 876 877 878 879 880 881 882 883
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                enable = scaler.is_enable()
                print(enable) # True
        """
884
        return super().is_enable()
885 886 887 888 889 890 891

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
892

893 894
        Examples:
            .. code-block:: python
895

896
                # required: gpu,xpu
897 898 899 900 901 902 903 904 905 906 907
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                use_dynamic_loss_scaling = scaler.is_use_dynamic_loss_scaling()
                print(use_dynamic_loss_scaling) # True
        """
908
        return super().is_use_dynamic_loss_scaling()
909 910 911 912 913 914 915

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
916

917 918 919
        Examples:
            .. code-block:: python

920
                # required: gpu,xpu
921 922 923 924 925 926 927 928 929 930 931
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                init_loss_scaling = scaler.get_init_loss_scaling()
                print(init_loss_scaling) # 1024
        """
932
        return super().get_init_loss_scaling()
933 934 935 936 937 938

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
939
            new_init_loss_scaling(float):  The new_init_loss_scaling used to update initial loss scaling factor.
940

941 942
        Examples:
            .. code-block:: python
943

944
                # required: gpu,xpu
945 946 947 948 949 950 951 952 953 954 955 956 957
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_init_loss_scaling()) # 1024
                new_init_loss_scaling = 1000
                scaler.set_init_loss_scaling(new_init_loss_scaling)
                print(scaler.get_init_loss_scaling()) # 1000
        """
958
        super().set_init_loss_scaling(new_init_loss_scaling)
959 960 961 962 963 964 965

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
966

967 968 969
        Examples:
            .. code-block:: python

970
                # required: gpu,xpu
971 972 973 974 975 976 977 978 979 980 981
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_ratio = scaler.get_incr_ratio()
                print(incr_ratio) # 2.0
        """
982
        return super().get_incr_ratio()
983 984 985 986 987 988 989

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
990

991 992 993
        Examples:
            .. code-block:: python

994
                # required: gpu,xpu
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_ratio()) # 2.0
                new_incr_ratio = 3.0
                scaler.set_incr_ratio(new_incr_ratio)
                print(scaler.get_incr_ratio()) # 3.0
        """
1008
        super().set_incr_ratio(new_incr_ratio)
1009 1010 1011 1012 1013 1014 1015

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
1016

1017 1018 1019
        Examples:
            .. code-block:: python

1020
                # required: gpu,xpu
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_ratio = scaler.get_decr_ratio()
                print(decr_ratio) # 0.5
        """
1032
        return super().get_decr_ratio()
1033 1034 1035 1036 1037 1038 1039

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
1040

1041 1042 1043
        Examples:
            .. code-block:: python

1044
                # required: gpu,xpu
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_ratio()) # 0.5
                new_decr_ratio = 0.1
                scaler.set_decr_ratio(new_decr_ratio)
                print(scaler.get_decr_ratio()) # 0.1
        """
1058
        super().set_decr_ratio(new_decr_ratio)
1059 1060 1061 1062 1063 1064 1065

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
1066

1067 1068 1069
        Examples:
            .. code-block:: python

1070
                # required: gpu,xpu
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_every_n_steps = scaler.get_incr_every_n_steps()
                print(incr_every_n_steps) # 1000
        """
1082
        return super().get_incr_every_n_steps()
1083 1084 1085 1086 1087 1088 1089

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
1090

1091 1092 1093
        Examples:
            .. code-block:: python

1094
                # required: gpu,xpu
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_every_n_steps()) # 1000
                new_incr_every_n_steps = 2000
                scaler.set_incr_every_n_steps(new_incr_every_n_steps)
                print(scaler.get_incr_every_n_steps()) # 2000
        """
1108
        super().set_incr_every_n_steps(new_incr_every_n_steps)
1109 1110 1111 1112 1113 1114 1115

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
1116

1117 1118 1119
        Examples:
            .. code-block:: python

1120
                # required: gpu,xpu
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_every_n_nan_or_inf = scaler.get_decr_every_n_nan_or_inf()
                print(decr_every_n_nan_or_inf) # 2
        """
1132
        return super().get_decr_every_n_nan_or_inf()
1133 1134 1135 1136 1137 1138 1139

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
1140

1141 1142 1143
        Examples:
            .. code-block:: python

1144
                # required: gpu,xpu
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_every_n_nan_or_inf()) # 2
                new_decr_every_n_nan_or_inf = 3
                scaler.set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
                print(scaler.get_decr_every_n_nan_or_inf()) # 3
        """
1158
        super().set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
1159 1160 1161 1162 1163 1164 1165

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
1166 1167 1168 1169 1170 1171 1172 1173 1174
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.

1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
        """
1192
        return super().state_dict()
1193 1194 1195 1196

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
1197

1198 1199
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `GradScaler.state_dict()`.
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
                scaler.load_state_dict(scaler_state)
        """
1218
        super().load_state_dict(state_dict)