test_hessian.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.compat as cpt
from utils import _compute_numerical_hessian


class TestHessian(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        self.shape = (2, 2)
        self.dtype = 'float32'
        self.np_dtype = np.float32
        self.numerical_delta = 1e-2
        self.rtol = 1e-2
        self.atol = 1e-2
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)

    def test_single_input(self):
        def func(x):
            return paddle.sum(paddle.matmul(x, x))

        numerical_hessian = _compute_numerical_hessian(
            func, self.x, self.numerical_delta, self.np_dtype)

        self.x.stop_gradient = False
        hessian = paddle.autograd.hessian(func, self.x)
        assert np.allclose(hessian.numpy(), numerical_hessian[0][0], self.rtol,
                           self.atol)

    def test_multi_input(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, y))

        numerical_hessian = _compute_numerical_hessian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)

        self.x.stop_gradient = False
        self.y.stop_gradient = False
        hessian = paddle.autograd.hessian(func, [self.x, self.y])
        for i in range(len(hessian)):
            for j in range(len(hessian[0])):
                assert np.allclose(hessian[i][j].numpy(),
                                   numerical_hessian[i][j], self.rtol,
                                   self.atol)

    def test_allow_unused_false(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, x))

        try:
            self.x.stop_gradient = False
            self.y.stop_gradient = False
            hessian = paddle.autograd.hessian(func, [self.x, self.y])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_allow_unused_true(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, x))

        numerical_hessian = _compute_numerical_hessian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        hessian = paddle.autograd.hessian(
            func, [self.x, self.y], allow_unused=True)
        for i in range(len(hessian)):
            for j in range(len(hessian[0])):
                if i == j == 0:
                    assert np.allclose(hessian[i][j].numpy(),
                                       numerical_hessian[i][j], self.rtol,
                                       self.atol)
                else:
                    assert hessian[i][j] is None

    def test_create_graph_false(self):
        def func(x):
            return paddle.sum(paddle.matmul(x, x))

        numerical_hessian = _compute_numerical_hessian(
            func, self.x, self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        hessian = paddle.autograd.hessian(func, self.x)
        assert hessian.stop_gradient == True
        assert np.allclose(hessian.numpy(), numerical_hessian[0][0], self.rtol,
                           self.atol)
        try:
            paddle.grad(hessian, self.x)
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("has no gradient") > 0

    # TODO(levi): enable this test case when matmul_grad_grad_grad is ok
    def _test_create_graph_true(self):
        def func(x):
            return paddle.sum(paddle.matmul(x, x))

        numerical_hessian = _compute_numerical_hessian(
            func, self.x, self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        hessian = paddle.autograd.hessian(func, self.x, create_graph=True)
        assert hessian.stop_gradient == False
        assert np.allclose(hessian.numpy(), numerical_hessian[0][0], self.rtol,
                           self.atol)
        triple_grad = paddle.grad(hessian, self.x)
        assert triple_grad is not None


class TestHessianFloat64(TestHessian):
    @classmethod
    def setUpClass(self):
        self.shape = (2, 2)
        self.dtype = 'float64'
        self.np_dtype = np.float64
        self.numerical_delta = 1e-5
        self.rtol = 1e-5
        self.atol = 1e-5
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)


if __name__ == "__main__":
    unittest.main()