im2col.cc 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/im2col.h"
16
#include <vector>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/im2col_cfo_cpu.h"
H
hedaoyuan 已提交
18 19

namespace paddle {
20
namespace operators {
21
namespace math {
H
hedaoyuan 已提交
22 23

/*
H
hedaoyuan 已提交
24 25 26
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
27 28
 */
template <class T>
H
hedaoyuan 已提交
29
class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
30
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
31
 public:
Q
QI JUN 已提交
32
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
33 34
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
35 36
                  const std::vector<int>& padding, framework::Tensor* col,
                  const DataLayout data_layout) {
L
liym27 已提交
37 38 39
    PADDLE_ENFORCE_EQ(im.dims().size(), 3, "The dimension of im should be 3.");
    PADDLE_ENFORCE_EQ(col->dims().size(), 5,
                      "The dimension of col should be 5.");
H
hedaoyuan 已提交
40

T
tensor-tang 已提交
41
    if (stride[0] == 1 && stride[1] == 1 && dilation[0] == 1 &&
42
        dilation[1] == 1) {
L
liym27 已提交
43 44
      if (padding[0] == 0 && padding[1] == 0 && padding[2] == 0 &&
          padding[3] == 0) {
45
        im2col_sh1sw1dh1dw1ph0pw0<T>(im, col, data_layout);
46
        return;
L
liym27 已提交
47 48
      } else if (padding[0] == 1 && padding[1] == 1 && padding[2] == 1 &&
                 padding[3] == 1) {
49
        im2col_sh1sw1dh1dw1ph1pw1<T>(im, col, data_layout);
50
        return;
H
hedaoyuan 已提交
51
      }
52
      // TODO(TJ): complete padding >=2
H
hedaoyuan 已提交
53
    }
54
    im2col_common<T>(im, dilation, stride, padding, col, data_layout);
H
hedaoyuan 已提交
55 56 57 58
  }
};

/*
H
hedaoyuan 已提交
59 60 61
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
62 63
 */
template <class T>
H
hedaoyuan 已提交
64
class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
65
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
66
 public:
Q
QI JUN 已提交
67
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
68 69 70
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
71 72
                  const std::vector<int>& padding, framework::Tensor* im,
                  const DataLayout data_layout) {
L
liym27 已提交
73 74 75
    PADDLE_ENFORCE_EQ(im->dims().size(), 3, "The dimension of im should be 3.");
    PADDLE_ENFORCE_EQ(col.dims().size(), 5,
                      "The dimension of col should be 5.");
76
    int im_channels =
77
        (data_layout != DataLayout::kNHWC ? im->dims()[0] : im->dims()[2]);
78
    int im_height =
79
        (data_layout != DataLayout::kNHWC ? im->dims()[1] : im->dims()[0]);
80
    int im_width =
81
        (data_layout != DataLayout::kNHWC ? im->dims()[2] : im->dims()[1]);
H
hedaoyuan 已提交
82 83
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
C
chengduoZH 已提交
84 85
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
C
chengduoZH 已提交
86

C
chengduoZH 已提交
87 88 89
    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
                       ((dilation[0] * (filter_height - 1) + 1))) /
                              stride[0] +
C
chengduoZH 已提交
90 91 92 93
                          1,
                      col_height,
                      "Output_height and padding(padding_up, padding_down) are "
                      "inconsistent.");
C
chengduoZH 已提交
94 95 96
    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
                       ((dilation[1] * (filter_width - 1) + 1))) /
                              stride[1] +
C
chengduoZH 已提交
97 98
                          1,
                      col_width,
C
chengduoZH 已提交
99
                      "Output_height and padding(padding_up, padding_down) are "
C
chengduoZH 已提交
100
                      "inconsistent.");
C
chengduoZH 已提交
101

C
chengduoZH 已提交
102
    int channels_col = im_channels * filter_height * filter_width;
H
hedaoyuan 已提交
103

C
chengduoZH 已提交
104
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
105 106 107
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
C
chengduoZH 已提交
108 109 110
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
C
chengduoZH 已提交
111
      for (int h = 0; h < col_height; ++h) {
C
chengduoZH 已提交
112
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
C
chengduoZH 已提交
113
        for (int w = 0; w < col_width; ++w) {
C
chengduoZH 已提交
114
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
C
chengduoZH 已提交
115 116
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
117 118 119 120 121 122 123 124 125
            int im_offset;
            if (data_layout == DataLayout::kNCHW) {
              im_offset =
                  (c_im * im_height + im_row_idx) * im_width + im_col_idx;
            } else {
              im_offset =
                  (im_row_idx * im_width + im_col_idx) * im_channels + c_im;
            }
            im_data[im_offset] +=
C
chengduoZH 已提交
126
                col_data[(c * col_height + h) * col_width + w];
H
hedaoyuan 已提交
127 128 129 130 131 132 133
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
134
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
135
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
136
template class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
137
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
138
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
139
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
140
template class Col2ImFunctor<paddle::operators::math::ColFormat::kCFO,
Q
QI JUN 已提交
141
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
142 143

/*
H
hedaoyuan 已提交
144 145 146
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
147 148
 */
template <class T>
H
hedaoyuan 已提交
149
class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
150
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
151
 public:
Q
QI JUN 已提交
152
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
153 154
                  const framework::Tensor& im, const std::vector<int>& dilation,
                  const std::vector<int>& stride,
155 156
                  const std::vector<int>& padding, framework::Tensor* col,
                  const DataLayout data_layout) {
L
liym27 已提交
157 158 159
    PADDLE_ENFORCE_EQ(im.dims().size(), 3, "The dimension of im should be 3.");
    PADDLE_ENFORCE_EQ(col->dims().size(), 5,
                      "The dimension of col should be 5.");
C
chengduoZH 已提交
160 161 162
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
C
chengduoZH 已提交
163 164 165 166
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
H
hedaoyuan 已提交
167 168

    const T* im_data = im.data<T>();
C
chengduoZH 已提交
169
    T* col_data = col->data<T>();
H
hedaoyuan 已提交
170

C
chengduoZH 已提交
171 172 173
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
174 175
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
176 177
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
178 179 180
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
181
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
182

C
chengduoZH 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;

              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
H
hedaoyuan 已提交
198 199 200 201 202 203 204 205 206
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
207 208 209
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
210 211
 */
template <class T>
H
hedaoyuan 已提交
212
class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
213
                    platform::CPUDeviceContext, T> {
H
hedaoyuan 已提交
214
 public:
Q
QI JUN 已提交
215
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
216 217 218
                  const framework::Tensor& col,
                  const std::vector<int>& dilation,
                  const std::vector<int>& stride,
219 220
                  const std::vector<int>& padding, framework::Tensor* im,
                  const DataLayout data_layout) {
L
liym27 已提交
221 222 223
    PADDLE_ENFORCE_EQ(im->dims().size(), 3, "The dimension of im should be 3.");
    PADDLE_ENFORCE_EQ(col.dims().size(), 5,
                      "The dimension of col should be 5.");
C
chengduoZH 已提交
224 225 226
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
H
hedaoyuan 已提交
227 228
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
C
chengduoZH 已提交
229 230
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
H
hedaoyuan 已提交
231

C
chengduoZH 已提交
232 233 234 235 236 237 238 239 240 241
    PADDLE_ENFORCE_EQ(
        (im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
        col_height,
        "Output_height and padding(padding_up, padding_down) are "
        "inconsistent.");
    PADDLE_ENFORCE_EQ(
        (im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
        col_width,
        "col_width and padding(padding_left, padding_right) are "
        "inconsistent.");
242

C
chengduoZH 已提交
243
    T* im_data = im->data<T>();
H
hedaoyuan 已提交
244 245
    const T* col_data = col.data<T>();

C
chengduoZH 已提交
246 247 248
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
H
hedaoyuan 已提交
249 250
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
C
refine  
chengduoZH 已提交
251 252
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
H
hedaoyuan 已提交
253 254 255
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
C
chengduoZH 已提交
256
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
C
refine  
chengduoZH 已提交
257

C
chengduoZH 已提交
258 259 260 261 262 263 264
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
C
refine  
chengduoZH 已提交
265

C
chengduoZH 已提交
266 267
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
H
hedaoyuan 已提交
268
                int im_offset =
C
chengduoZH 已提交
269
                    (channel * im_height + im_row_offset) * im_width +
H
hedaoyuan 已提交
270 271
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
272 273 274 275 276 277 278 279 280
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
281
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
282
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
283
template class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
284
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
285
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
286
                             platform::CPUDeviceContext, float>;
H
hedaoyuan 已提交
287
template class Col2ImFunctor<paddle::operators::math::ColFormat::kOCF,
Q
QI JUN 已提交
288
                             platform::CPUDeviceContext, double>;
H
hedaoyuan 已提交
289

290
}  // namespace math
291
}  // namespace operators
H
hedaoyuan 已提交
292
}  // namespace paddle