selected_rows_impl.h 5.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <memory>
#include <mutex>  // NOLINT
#include <unordered_map>
#include <utility>
#include <vector>

24 25 26 27 28
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/rw_lock.h"
J
Jiabin Yang 已提交
29

30
namespace phi {
J
Jiabin Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class SelectedRowsImpl {
  /*
   * @brief We can use the SelectedRowsImpl structure to reproduce a sparse
   * table.
   *  A sparse table is a key-value structure that the key is an `int64_t`,
   *  and the value is a Tensor which the first dimension is 0.
   *  You can use the following interface to operate the sparse table, and you
   * can find
   *  some detail information from the comments of each interface:
   *
   *  HasKey(key), whether the sparse table has the specified key.
   *  Set(key, value), set a key-value pair into the sparse table.
   *  Get(keys, value*), get value by given key list and apply it to the given
   * value pointer
   *    with the specified offset.
   *
   */
 public:
  SelectedRowsImpl(const std::vector<int64_t>& rows, const int64_t& height)
      : rows_(rows), height_(height) {
    value_.reset(new DenseTensor());
    rwlock_.reset(new RWLock);
  }

  SelectedRowsImpl() {
    height_ = 0;
    value_.reset(new DenseTensor());
    rwlock_.reset(new RWLock);
  }

  const DenseTensor& value() const { return *value_; }

  DenseTensor* mutable_value() { return value_.get(); }

  int64_t height() const { return height_; }

  void set_height(int64_t height) { height_ = height; }

69
  const std::vector<int64_t>& rows() const { return rows_; }
J
Jiabin Yang 已提交
70

71
  std::vector<int64_t>* mutable_rows() { return &rows_; }
J
Jiabin Yang 已提交
72

73
  void set_rows(const std::vector<int64_t>& rows) { rows_ = rows; }
J
Jiabin Yang 已提交
74 75 76 77 78 79 80 81 82

  /*
   * @brief Get the index of key in rows
   *
   * @return -1 if the key does not exists.
   */
  int64_t Index(int64_t key) const {
    auto it = std::find(rows_.begin(), rows_.end(), key);
    if (it == rows_.end()) {
83
      PADDLE_THROW(phi::errors::NotFound(
J
Jiabin Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
          "Input id (%lld) is not in current rows table.", key));
    }
    return static_cast<int64_t>(std::distance(rows_.begin(), it));
  }

  /*
   * @brief whether has the specified key in the table.
   *
   * @return true if the key is exists.
   */
  bool HasKey(int64_t key) const;

  /*
   * @brief Get value by the key list.
   * Note!!! this interface is only used when selected_rows is used as
   * parameters
   * for distribute lookup table.
   *
   * @return a list of pair which contains the non-exists key and the index in
   * the value
   */
  void Get(const DenseTensor& ids,
           DenseTensor* value,
           bool auto_grown = false,
           bool is_test = false);

  void* AllocateFrom(Allocator* allocator,
                     DataType dtype,
112 113
                     size_t requested_size = 0,
                     bool fake_alloc = false);
J
Jiabin Yang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  /*
   * @brief Get the index of the key from id_to_index_ map. If the key not
   * exist,
   * add the key into id_to_index_.
   *
   * Note!!! this interface is only used when selected_rows is used as
   * parameters
   * for distribute lookup table.
   *
   * @return index of the key.
   */
  int64_t AutoGrownIndex(int64_t key, bool auto_grown, bool is_test = false);

  /*
   * @brief Get the index of the key from id_to_index_ map.
   */
  inline int64_t GetIndexFromId(int64_t key) const {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

  void SyncIndex();
  /*
   * @brief Get complete Dims before
   */
144
  phi::DDim GetCompleteDims() const {
J
Jiabin Yang 已提交
145 146
    std::vector<int64_t> dims = vectorize(value_->dims());
    dims[0] = height_;
147
    return phi::make_ddim(dims);
J
Jiabin Yang 已提交
148 149 150 151 152 153 154 155
  }

  /// \brief Returns the number of elements contained in tensor.
  /// \return The number of elements contained in tensor.
  int64_t numel() const { return value_->numel(); }

  /// \brief Returns the dims of the tensor.
  /// \return The dims of the tensor.
156
  const DDim& dims() const noexcept { return value_->dims(); }
J
Jiabin Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  /// \brief Returns the data type of the tensor.
  /// \return The data type of the tensor.
  DataType dtype() const noexcept { return value_->dtype(); }

  /// \brief Returns the data layout of the tensor.
  /// \return The data layout of the tensor.
  DataLayout layout() const noexcept { return value_->layout(); }

  /// \brief Returns the data place of the tensor.
  /// \return The data place of the tensor.
  const Place& place() const { return value_->place(); }

  /// \brief Test whether the metadata is valid.
  /// \return Whether the metadata is valid.
  bool valid() const noexcept { return value_->valid(); }

  /// \brief Test whether the storage is allocated.
  /// return Whether the storage is allocated.
  bool initialized() const { return value_->initialized(); }

 private:
  // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here.
  // SelectedRowsImpl are simply concated when adding together. Until a
  // SelectedRowsImpl add a Tensor, will the duplicate rows be handled.
182
  std::vector<int64_t> rows_;
J
Jiabin Yang 已提交
183 184 185 186 187 188 189
  std::unordered_map<int64_t, int64_t>
      id_to_index_;  // should not be used when rows_ has duplicate member
  std::unique_ptr<DenseTensor> value_{nullptr};
  int64_t height_;  // height indicates the underline tensor's height
  std::unique_ptr<RWLock> rwlock_{nullptr};
};

190
}  // namespace phi