test_elementwise_pow_op.py 8.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Q
Qiao Longfei 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest, skip_check_grad_ci
18
import paddle.fluid as fluid
19
import paddle
Q
Qiao Longfei 已提交
20 21


22 23 24 25 26 27
def pow_grad(x, y, dout):
    dx = dout * y * np.power(x, (y - 1))
    dy = dout * np.log(x) * np.power(x, y)
    return dx, dy


Q
Qiao Longfei 已提交
28 29 30
class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
31
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
32
        self.inputs = {
33
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
34
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64"),
Q
Qiao Longfei 已提交
35 36 37 38
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
39 40 41 42
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
43

44
    def test_check_grad_normal(self):
45 46 47 48
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
49

Q
Qiao Longfei 已提交
50

51 52 53
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
54
        self.python_api = paddle.pow
55
        self.inputs = {
56
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
57
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64"),
58 59 60 61 62 63 64
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
65
        self.python_api = paddle.pow
66
        self.inputs = {
67
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
68
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64"),
69 70 71 72
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


73
@skip_check_grad_ci(
74 75
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
Q
Qiao Longfei 已提交
76 77 78
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
79
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
80
        self.inputs = {
81
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
82
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64),
83 84 85 86 87 88 89
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
90
        self.python_api = paddle.pow
91
        self.inputs = {
92
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
93
            'Y': np.random.uniform(1, 3, [100]).astype("float64"),
94 95 96 97 98 99 100
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
101
        self.python_api = paddle.pow
102
        self.inputs = {
103
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
104
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
Q
Qiao Longfei 已提交
105 106 107 108
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


109 110 111
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
112
        self.python_api = paddle.pow
113
        self.inputs = {
114
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
115
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
116 117 118
        }
        self.attrs = {'axis': 1}
        self.outputs = {
119
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
120 121 122 123 124 125
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
126
        self.python_api = paddle.pow
127
        self.inputs = {
128
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
129
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
130 131 132
        }
        self.attrs = {'axis': 0}
        self.outputs = {
133 134 135
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
136 137 138 139 140 141
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
142
        self.python_api = paddle.pow
143
        self.inputs = {
144
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
145
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64"),
146 147 148
        }
        self.attrs = {'axis': 1}
        self.outputs = {
149 150 151
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5, 1)
            )
152 153 154
        }


155 156 157
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
158
        self.python_api = paddle.pow
159
        self.inputs = {
160
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
161
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64"),
162 163 164 165
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


166 167 168
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
169
        self.python_api = paddle.pow
170 171 172 173
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
174 175 176 177
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
178 179 180 181 182 183 184 185 186 187


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
188 189 190
        self.grad_x = (
            self.grad_res * self.y * (self.x ** (self.y - 1)).astype("int")
        )
191
        # dy = dout * log(x) * pow(x, y)
192 193 194
        self.grad_y = (
            self.grad_res * np.log(self.x) * (self.x**self.y)
        ).astype("int")
195 196

    def test_grad(self):
197
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
198 199 200 201 202 203 204 205 206 207 208
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
209 210 211
                np.testing.assert_array_equal(res.gradient(), self.grad_res)
                np.testing.assert_array_equal(x.gradient(), self.grad_x)
                np.testing.assert_array_equal(y.gradient(), self.grad_y)
212
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
213 214


215 216 217 218 219 220
class TestElementwisePowOpFP16(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
221
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
222 223 224 225 226 227 228 229 230 231
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)

    def test_check_grad(self):
232 233 234 235 236 237 238 239
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=pow_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
            check_eager=True,
        )
240 241


Q
Qiao Longfei 已提交
242 243
if __name__ == '__main__':
    unittest.main()