crop_op.h 3.7 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
19
#include "paddle/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
20 21

namespace paddle {
22
namespace operators {  // Internal
W
wanghaoshuang 已提交
23 24 25 26

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
27 28 29
using framework::Tensor;

template <typename T>
Y
Yu Yang 已提交
30
class CropKernel : public framework::OpKernel<T> {
31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
W
wanghaoshuang 已提交
35
    const T* x_data = x->data<T>();
36
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
37 38
    auto x_stride = framework::stride(x->dims());
    auto out_stride = framework::stride(out->dims());
39 40
    auto offsets = context.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
41
        x->dims().size(), static_cast<int64_t>(offsets.size()),
42 43
        "Offsets size should be equal to dimension size of input tensor.");
    int64_t offset = 0;
Q
qiaolongfei 已提交
44
    for (size_t i = 0; i < offsets.size(); ++i) {
45 46 47 48 49 50
      offset += (x_stride[i] * offsets[i]);
    }
    StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
                     out->dims(), out_stride, out_data);
  }
};
W
wanghaoshuang 已提交
51

Q
QI JUN 已提交
52
template <typename DeviceContext, typename T, size_t D>
W
wanghaoshuang 已提交
53
void CropGradFunction(const framework::ExecutionContext& context) {
54
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
55
  if (d_x != nullptr) {
56
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
57
    d_x->mutable_data<T>(context.GetPlace());
58
    auto offsets = context.Attr<std::vector<int>>("offsets");
59
    Eigen::array<std::pair<int, int>, D> paddings;
Q
qiaolongfei 已提交
60
    for (size_t i = 0; i < D; ++i) {
61
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
62
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
63 64 65
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
Q
QI JUN 已提交
66 67
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
68
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
69 70 71
  }
}

Q
QI JUN 已提交
72
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
73
class CropGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
74 75
 public:
  void Compute(const framework::ExecutionContext& context) const override {
76
    size_t rank =
77
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
78
    switch (rank) {
W
wanghaoshuang 已提交
79
      case 1:
Q
QI JUN 已提交
80
        CropGradFunction<DeviceContext, T, 1>(context);
W
wanghaoshuang 已提交
81 82
        break;
      case 2:
Q
QI JUN 已提交
83
        CropGradFunction<DeviceContext, T, 2>(context);
W
wanghaoshuang 已提交
84 85
        break;
      case 3:
Q
QI JUN 已提交
86
        CropGradFunction<DeviceContext, T, 3>(context);
W
wanghaoshuang 已提交
87 88
        break;
      case 4:
Q
QI JUN 已提交
89
        CropGradFunction<DeviceContext, T, 4>(context);
W
wanghaoshuang 已提交
90 91
        break;
      case 5:
Q
QI JUN 已提交
92
        CropGradFunction<DeviceContext, T, 5>(context);
W
wanghaoshuang 已提交
93 94
        break;
      case 6:
Q
QI JUN 已提交
95
        CropGradFunction<DeviceContext, T, 6>(context);
W
wanghaoshuang 已提交
96 97
        break;
      default:
98 99
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
100 101 102 103 104 105
    }
  }
};

}  // namespace operators
}  // namespace paddle