test_tile_op.py 11.0 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
L
lilong12 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
L
lilong12 已提交
20
from op_test import OpTest
21

L
lilong12 已提交
22 23
import paddle
import paddle.fluid as fluid
24
import paddle.fluid.layers as layers
25
from paddle.fluid import Program, core, program_guard
L
lilong12 已提交
26 27


28
# Situation 1: repeat_times is a list (without tensor)
L
lilong12 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
class TestTileOpRank1(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'repeat_times': self.repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class TestTileOpRank_ZeroDim1(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = []


class TestTileOpRank_ZeroDim2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2]


class TestTileOpRank_ZeroDim3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = []
        self.repeat_times = [2, 3]


L
lilong12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# with dimension expanding
class TestTileOpRank2Expanding(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.repeat_times = [2, 2]


class TestTileOpRank2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


class TestTileOpRank3_Corner(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (1, 1, 1)


class TestTileOpRank3_Corner2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (2, 2)


class TestTileOpRank3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 15)
        self.repeat_times = (2, 1, 4)


class TestTileOpRank4(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.repeat_times = (3, 2, 1, 2)


L
lilong12 已提交
105
# Situation 2: repeat_times is a list (with tensor)
L
lilong12 已提交
106 107 108 109 110 111
class TestTileOpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()
        repeat_times_tensor = []
        for index, ele in enumerate(self.repeat_times):
112 113 114
            repeat_times_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
lilong12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'repeat_times_tensor': repeat_times_tensor,
        }
        self.attrs = {"repeat_times": self.infer_repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]
        self.infer_repeat_times = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [1, 1]
        self.infer_repeat_times = [1, -1]


class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]
        self.infer_repeat_times = [-1, 3]


# Situation 3: repeat_times is a tensor
class TestTileOpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'RepeatTimes': np.array(self.repeat_times).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


# Situation 4: input x is Integer
class TestTileOpInteger(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
186
            'X': np.random.randint(10, size=(4, 4, 5)).astype("int32")
L
lilong12 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 5: input x is Bool
class TestTileOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


# Situation 56: input x is Integer
class TestTileOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.inputs = {
214
            'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
L
lilong12 已提交
215 216 217 218 219 220 221 222 223 224 225 226
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()


class TestTileError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
227 228 229
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
L
lilong12 已提交
230 231 232 233 234
            repeat_times = [2, 2]
            self.assertRaises(TypeError, paddle.tile, x1, repeat_times)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tile, x2, repeat_times)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
235
            x3.stop_gradient = False
L
lilong12 已提交
236 237 238
            self.assertRaises(ValueError, paddle.tile, x3, repeat_times)


239 240 241 242 243 244 245 246 247 248
class TestTileAPIStatic(unittest.TestCase):
    def test_api(self):
        with program_guard(Program(), Program()):
            repeat_times = [2, 2]
            x1 = fluid.layers.data(name='x1', shape=[4], dtype="int32")
            out = paddle.tile(x1, repeat_times)
            positive_2 = fluid.layers.fill_constant([1], dtype="int32", value=2)
            out2 = paddle.tile(x1, repeat_times=[positive_2, 2])


L
lilong12 已提交
249 250 251
# Test python API
class TestTileAPI(unittest.TestCase):
    def test_api(self):
L
lilong12 已提交
252 253
        with fluid.dygraph.guard():
            np_x = np.random.random([12, 14]).astype("float32")
254
            x = paddle.to_tensor(np_x)
L
lilong12 已提交
255 256

            positive_2 = np.array([2]).astype("int32")
257
            positive_2 = paddle.to_tensor(positive_2)
L
lilong12 已提交
258 259

            repeat_times = np.array([2, 3]).astype("int32")
260
            repeat_times = paddle.to_tensor(repeat_times)
L
lilong12 已提交
261 262 263 264 265 266 267 268

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

            assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
L
lilong12 已提交
269 270


271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
class TestTileDoubleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 2], False, dtype)
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

286 287 288
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
289
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
290 291 292
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTileTripleGradCheck(unittest.TestCase):
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [2, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 2], False, dtype)
        data.persistable = True
        out = paddle.tile(data, [2, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

318 319 320
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
321
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
322 323 324
        gradient_checker.triple_grad_check_for_dygraph(
            self.tile_wrapper, [data], out, x_init=[data_arr], place=place
        )
325 326 327 328 329 330 331 332 333 334

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
class TestTileAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.tile(x, [])
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.tile(x, [3])
        out.backward()
        self.assertEqual(out.shape, [3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [3])

        out = paddle.tile(x, [2, 3])
        out.backward()
        self.assertEqual(out.shape, [2, 3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [2, 3])

        paddle.enable_static()


L
lilong12 已提交
364
if __name__ == "__main__":
H
hong 已提交
365
    paddle.enable_static()
L
lilong12 已提交
366
    unittest.main()