dist_embedding.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import register_distributed_operator_impl
19 20
from .common import copy_distributed_attr_for_var
from .common import copy_distributed_attr_for_dist_op
21 22 23 24 25 26
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
27
from ..dist_attribute import OperatorDistributedAttribute
28 29 30 31
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
32
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
33
from ..process_group import new_process_group
34
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank
35 36


37
class DistributedEmbedding(DistributedOperatorImplContainer):
38 39 40 41 42
    def __init__(self, name):
        super(DistributedEmbedding, self).__init__()
        self._name = name


43 44 45 46
register_distributed_operator_impl_container("lookup_table_v2",
                                             DistributedEmbedding("embedding"))
register_distributed_operator_impl_container("c_embedding",
                                             DistributedEmbedding("embedding"))
47 48 49 50 51 52 53


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedEmbeddingImpl, self).__init__()
        self._name = name
54
        self._forward_implemented = True
55
        self._backward_implemented = True
56

57 58 59
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
60 61 62 63 64 65 66 67 68 69 70 71 72
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(w_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

73 74 75
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
76 77 78 79 80 81 82 83
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

84
    def update_dims_mapping(self, dist_op):
85
        changed = False
86 87
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

108 109 110 111 112 113
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

114 115 116 117 118 119
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
120 121 122
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

123
        # check validation of inputs / outputs
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
        Weight_var = main_block.var(kwargs['W'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
150 151
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
152 153 154

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
155
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
156 157 158 159 160 161 162 163 164
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

165
        # TODO caculate ring id
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)

        # copy Out_var's dist_attr to intermediate_var_0's dist_attr
185
        copy_distributed_attr_for_var(ctx, intermediate_var_0, Out_var)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
            inputs={'Ids': [Ids_var],
                    'W': [Weight_var]},
            outputs={'Out': [intermediate_var_0]},
            attrs={"start_index": relative_idx})

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })

        # copy serial op's dist_attr to dist op's dist_attr
211
        copy_distributed_attr_for_dist_op(ctx, c_embedding_op, main_block,
212
                                          op_dist_attr)
213
        copy_distributed_attr_for_dist_op(ctx, c_allreduce_sum_op, main_block,
214 215 216
                                          op_dist_attr)

        # param initialization sync
217 218
        assert Weight_var.name not in dist_op_context.already_init_sync_vars
        dist_op_context.already_init_sync_vars.add(Weight_var.name)
219
        param = startup_block.var(Weight_var.name)
220 221 222
        param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
        process_mesh = param_dist_attr.process_mesh
        dim_mapping = param_dist_attr.dims_mapping
223

224
        # NOTE all not splited axis should be presented in mesh
225 226 227
        for axis, size in enumerate(process_mesh.topology):
            if size <= 1 or axis in dim_mapping:
                pass
228
            else:
229
                group_ranks = _get_comm_group(process_mesh.processes,
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                                              process_mesh.topology, axis,
                                              rank_id)
                sync_group = new_process_group(group_ranks)

                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': sync_group.id,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward
                    })
        startup_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
250 251 252 253 254
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        backward_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
255 256
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
257

258
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
259 260
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                                              rank_id)

        # check if need gradient allreduce
        need_gradient_allreduce = False

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
289
        process_mesh = dist_attr.process_mesh
290 291 292 293 294
        var_dim_mapping = dist_attr.get_input_dims_mapping(Ids_var.name)
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            need_gradient_allreduce = True
295

296
            group_ranks = _get_comm_group(process_mesh.processes,
297
                                          process_mesh.topology,
298 299 300 301 302 303 304
                                          batch_size_axis, rank_id)
            dp_degree = len(group_ranks)
            dp_group = new_process_group(group_ranks)

        if need_gradient_allreduce:
            W_Grad_var = main_block.var(kwargs['W@GRAD'][0])
            allreduce_op = main_block.append_op(
305
                type='c_allreduce_sum',
306 307
                inputs={'X': [W_Grad_var]},
                outputs={'Out': [W_Grad_var]},
308
                attrs={
309
                    'ring_id': dp_group.id,
310
                    'use_calc_stream': True,
311
                    OP_ROLE_KEY: OpRole.Backward
312
                })
313 314 315 316 317 318 319
            scale_op = main_block.append_op(
                type='scale',
                inputs={'X': W_Grad_var},
                outputs={'Out': W_Grad_var},
                attrs={'scale': 1.0 / dp_degree,
                       OP_ROLE_KEY: OpRole.Backward})
            main_block._sync_with_cpp()
320

321 322 323
            dims_mapping = ctx.get_tensor_dist_attr_for_program(
                W_Grad_var).dims_mapping
            process_mesh = dist_attr.process_mesh
324
            for op in [allreduce_op, scale_op]:
325 326
                op_attr = OperatorDistributedAttribute()
                op_attr.process_mesh = process_mesh
327 328
                op_attr.set_output_dims_mapping(W_Grad_var.name, dims_mapping)
                op_attr.set_input_dims_mapping(W_Grad_var.name, dims_mapping)
329
                ctx.set_op_dist_attr_for_program(op, op_attr)
330

331 332 333

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
334 335
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))